
Daniele Postacchini  www.danielepostacchini.it 

 

 

PILLOLE DI PROGRAMMAZIONE IN LINGUAGGIO C 

 

Con questa dispensa affrontiamo le basi della programmazione in linguaggio C e per farlo  utilizzeremo un 

ambiente di sviluppo integrato (I.D.E. Integrated Development Environment) chiamato Codeblocks. 

 

Questo tutorial non può ovviamente sostituire un libro sulla programmazione in linguaggio C, ma vuol fornire 

le nozioni essenziali e gli strumenti per poter realizzare rapidamente semplici programmi. 

 

 

PARADIGMI DI PROGRAMMAZIONE 

Un paradigma di programmazione è un modello che definisce la struttura di un programma. Ogni paradigma 

prevede modalità differenti per organizzare il codice e per rappresentare i dati. 

Esistono diversi paradigmi di programmazione; tra i più noti troviamo quello imperativo e quello dichiarativo. 

Nel primo caso, il paradigma imperativo (probabilmente il più diffuso) consiste nel fornire al computer una 

sequenza di istruzioni da eseguire per raggiungere un determinato risultato. Questo implica la necessità di 

tenere traccia dello stato del programma e delle operazioni da svolgere passo dopo passo. 

Nel secondo caso, il paradigma dichiarativo si basa sull’indicare alla macchina che cosa ottenere, senza spe-

cificare come procedere per ottenerlo. È quindi il sistema stesso a determinare la sequenza delle operazioni 

necessarie. 

 

Nel nostro caso andremo ad utilizzare un linguaggio di programmazione basato sul paradigma di program-

mazione IMPERATIVO.  Pertanto sarà compito del programmatore stabilire la tipologia di dati da utilizzare e 

organizzare la sequenza delle operazioni che la macchina dovrà eseguire per raggiungere il risultato richiesto.  

 

 

 

 

 

 

 

 

 

 



Daniele Postacchini  www.danielepostacchini.it 

 

 

Il programma è scaricabile al seguente link: https://www.codeblocks.org/downloads/binaries/ 

Scaricare la versione completa di compilatore  

All’avvio del programma si presenta la seguente finestra.   

    

 

 

 

 

 

 

 

 

1) Prima di iniziare un nuovo progetto, occorre creare una cartella 

dove salvare tutti i file. 

 

2) Successivamente dal menu File, scegliere New - Project. 

 

 

 

  

 

 

3) Si aprirà una finestra all’interno della quale ci sono 

i vari tipo di progetto che possiamo realizzare,  

noi sceglieremo  Console Application e poi 

faremo clic sul pulsante GO. 

 

 

 

 

 

 

 

  

https://www.codeblocks.org/downloads/binaries/


Daniele Postacchini  www.danielepostacchini.it 

 

4) Partira il Wizard (l’aiuto nella creazione del progetto). Faremo click su NEXT scegliendo poi il  

linguaggio C. Successivamente daremo un nome al progetto e selezioneremo la cartella che ave-

vamo creato inizialmente. 

    

 

 

 

 

 

 

 

 

   

 

   

 

Proseguire con NEXT fino ad arrivare alla scelta del compilatore. 

Lasciamo le impostazioni predefinite e facciamo FINISH. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Al termine nella parte sinistra della schermataavremo 
il progetto con i relativi files. 
Inizialmente troveremo solo il file main.c dove 
scrivere il programma. 
 
#include <stdio.h> include la libreria standard di input/output 
(serve per funzioni come printf e scanf). 
 
#include <stdlib.h> → include la libreria standard (qui non è 
ancora usata, ma viene inserita per convenzione). 
 
 int main() → è la funzione principale del programma C, da cui 
parte l’esecuzione. 
 
printf("Hello world!\n"); → stampa sullo schermo la stringa 
"Hello world!" seguita da un carattere ASCII “a capo” (\n). 
 
return 0; → indica che il programma è terminato con successo (0 = nessun errore). 

 

Approfondimento: 
Il compilatore è un programma che traduce il codice 
sorgente scritto in un linguaggio di programmazione di 
alto livello (come C, C++, Java, ecc.) in un linguaggio 
macchina o in un codice intermedio che può essere 
eseguito direttamente dal computer o da un interprete. 
In altre parole, il compilatore converte il codice leggibile 
dall’uomo in istruzioni comprensibili dal processore. 
La scelta consigliata per Codeblocks, è GNU GCC 
Compiler”, che è uno degli strumenti Open Source, più 
diffusi e affidabili per la compilazione di programmi in C e 
C++. 
 



Daniele Postacchini  www.danielepostacchini.it 

 

  
 
A questo punto possiamo già compilare il 
programma mediante il comando BUILD.  
 
Se ci sono errori verranno segnalati nella 
finestra di Log in basso.  
 
 
 
 
 
 
Dopo aver compilato possiamo cliccare sul 
pulsante RUN, o fare direttamente le due 
operazioni insieme con BUILD e RUN. 
Il programma verrà eseguito e nel nostro 
caso vedremo solamente la scritta  
Hello World 
 
 
  
 
 
 
 
 

 
  

Approfondimento: 
Il codice ASCII è l’acronimo di American Standard Code for Information Interchange, cioè Codice 
Standard Americano per lo Scambio di Informazioni. 
È un sistema di codifica che associa a ogni carattere (lettera, cifra, simbolo o comando di controllo) un 
numero intero compreso tra 0 e 127. 
Questi numeri vengono poi rappresentati in binario (cioè con 0 e 1) nei computer. 
Ad esempio nel codice ASCII la lettera A corrisponde al valore 65, il numero 1 è visto come un carattere e 
corrisponde al numero decimale 49 e così via. 
Nel codice ASCII ci sono anche comandi come ad esempio nuova linea che corrisponde al numero 10. 



Daniele Postacchini  www.danielepostacchini.it 

 

 
Esempio n.1 
 
Prima di affrontare la programmazione in linguaggio C, proviamo un altro esempio. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Anche in questo caso con il pulsante BUILD e RUN, possiamo compilare e mandare in esecuzione il 
programma ed anche in questo caso l’esecuzione del programma avverrà sulla generica schermata nera 
dove possiamo solamente inserire dei valori e vedere dei risultati.  
   
 
 
 
 
 
 
 
 
Prima di affrontare la programmazione per un’interfaccia grafica realizzeremo programmi in questa 
modalità. 
 
Ma per farlo dovremo innanzitutto conoscere il linguaggio C. 

 
Di seguito affronteremo i seguenti argomenti: 
 

• Variabili. 

• Array monodimensionali e multidimensionali. 

• Operatori. 

• Funzioni Scanf e Printf. 

• Strutture di controllo. 

• Funzioni. 

• Puntatori. 

• Files. 
  



Daniele Postacchini  www.danielepostacchini.it 

 

VARIABILI 
Nel linguaggio C e C++, le variabili devono sempre essere dichiarate prima del loro utilizzo. 
Dichiarare una variabile significa indicare al compilatore il nome della variabile (identificatore) e il suo tipo. 
Il compilatore riserverà uno spazio in memoria di dimensioni adeguate a contenere quel tipo di dato. 
Nel linguaggio C i tipi di variabili fondamentali sono i seguenti: 
 

TIPO SPAZIO OCCUPATO 
RANGE DI VALORI 

min max 

• char 1 byte -128 +127 

• unsigned char 1 byte 0 +255 

• short Int 
• short 

2 byte -32.768 +32.767 

• int 
sistemi a 16 bit 

2 byte -32.768 +32.767 

• int 
sistemi a 32 bit 

4 byte –2 147 483 648 +2 147 483 647 

• unigned int 
sistemi a 16 bit 

2 byte 0 +65.535 

• unigned int 
sistemi a 32 bit 

4 byte –2 147 483 648 +2 147 483 647 

• long 4 byte -2.147.483.648 +2.147.483.647 

• unsigned long 4 byte 0 +4.294.967.295 

• long long 
sistemi a 64 bit 

8 byte –9 223 372 036 854 775 808 +9 223 372 036 854 775 807 

• unsigned long 
sistemi a 64 bit 

8 byte 0 18 446 744 073 709 551 615 

• float   

4 byte 
7 cifre significative 

8 bit esponente 
23 bit mantissa 

±1.175 494 × 10⁻³⁸ ±3.402 823 × 10³⁸ 

• double  

8 byte 
15 cifre significative 

11 bit esponente 
52 bit mantissa 

±2.225 074 × 10⁻³⁰⁸ ±1.797 693 × 10³⁰⁸ 

• long double  

10 byte 
19 cifre significative 

15 bit esponente 
64 bit mantissa 

 
In base all’architettura del 

processore esiste anche da 16 
byte 

  

 
 
  



Daniele Postacchini  www.danielepostacchini.it 

 

I numeri senza virgola, char, int, short e long, vengono memorizzati utilizzando il sistema binario, per 
comprendere in quale maniera, possiamo considerare il numero più piccolo, cioè il tipo char, con due 
esempi: 

se il numero è positivo: char prova=98; in binario=0110 0010  
se il numero è negativo: char prova=-98; in binario=1001 1110 

 
Nel primo caso il numero è positivo ed il codice binario è la semplice trasformazione del valore in decimale: 

98=0110 0010  =0 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20  = 
=    0      +     64   +     32   +     0      +    0        +     0      +     2      +     0    = 
= 64+ 32+2=98 

 
Nel secondo caso il numero negativo viene rappresentato facendo il complemento a due del valore 98 
convertito in binario, cioè si ricava il complemento del numero binario invertendo ogni singolo bit e 
successivamente si somma il valore 1: 

complemento di 0110 0010 = 1001 1101 (si invertono i singoli bit) 
1001 1101 + 1 = 1001 1110 

 

I numeri con la virgola vengono memorizzati utilizzando il sistema a virgola mobile che prevede una 
struttura di bit composta da segno-esponente-mantissa. Anche in questo caso consideriamo il più piccolo 
dei numeri con la virgola e cioè il tipo float: 
 
 
 
 
 
 
 
Lo standard IEEE754 definisce quanto segue: 
 
SEGNO:  0=positivo 1=negativo 
ESPONENTE:  L’esponente deve rappresentare valori positivi e negativi, per fare questo nello spazio dedicato viene 

messo il valore dell’esponente reale sommato al valore 127.  
In questo modo volendo memorizzare un esponente pari a +2 ,nel campo troveremo 129 che in binario 
corrisponde a 1000 0001. 
Volendo invece memorizzare un esponente pari a -2, nel campo troveremo 125 che in binario 
corrisponde a 0111 1101. 

MANTISSA:  La mantissa è normalizzata, la normalizzaione si ottiene moltiplicando per 2 l’effettivo valore  
(in binario la moltiplicazione per 2 avviene shiftando a sinistra di una posizione) fino a quando il bit 
più a sinistra della mantissa diventa 1, eliminando in questo modo tutti i bit a zero non significativi a 
sinistra. Ciò significa che il bit più a sinistra vale sempre 1, per questo motivo è inutile memorizzare 
questa informazione, i 23 bit pertanto serviranno solo a rappresentare la parte frazionaria del 
numero. 
Ad esempio una mantissa pari a 100 1011 0010 0000 0011 0001 trasformata come parte frazionaria 
in decimale corrisponde a: 



Daniele Postacchini  www.danielepostacchini.it 

 

 
 
 
 
 
 
 
 
 
 
 
 
Se ad esempio nei 4 byte abbiamo la seguente sequenza 0100 0100 0100 1011 0010 0000 0011 0001 ,  
 
significa che il valore sarà ottenuto come segue: 
 
S =0=+ 
E=100 0100 0=136 
M=100 1011 0010 0000 0011 0001 =0,58691990375518798828125 
 
Sostituendo i valori otteniamo: 
 
VALORE = 812,50299072265625 
 
Al seguente link, un convertitore online dove è possibile verificare e provare la conversione in virgola mobile. 
https://www.h-schmidt.net/FloatConverter/IEEE754.html  

 

DICHIARAZIONE DI VARIABILI 
 
La dichiarazione di variabili serve a riservare uno spazio nella memoria RAM adatto al tipo di dato che la 
variabile dovrà contenere. 
Si possono dichiarare variabili globali, cioè accessibili da ogni parte del programma, oppure variabili locali,  
dichiarate all’interno di una funzione e utilizzabili solo al suo interno. 
La dichiarazione di una variabile globale avviene generalmente all’inizio del programma, prima del main. 

esempio:    int contatore=5; 
float valore; 
 

Nel programma potrò cambiare il valore delle due variabili assegnando loro un valore o il risultato di 
un’operazione. 
 
Con lo stesso meccanismo si possono dichiarare variabili che non potranno mai cambiare il proprio valore, 
cioè le costanti. 

esempio:    const int giorni=7; 
Nel programma la variabile giorni non cambierà mai il proprio valore. 

https://www.h-schmidt.net/FloatConverter/IEEE754.html


Daniele Postacchini  www.danielepostacchini.it 

 

Durante l’esecuzione di un programma, il valore di una variabile può essere modificato assegnandole 
direttamente un nuovo valore oppure il risultato di un’operazione, utilizzando l’operatore =  

 
esempio:    int contatore;        //dichiarazione della variabile senza valore 

int risultato;         //dichiarazione della variabile senza valore 
 int valore1=10;   //dichiarazione della variabile con valore iniziale 

int valore2=5 ;   //dichiarazione della variabile con valore iniziale 
 

int main(){ 
contatore=5     //assegnazione diretta del valore 5 alla variabile contatore 
contatore=contatore-1;   //assegno un nuovo valore in questo caso 4 
risultato=valore1*valore2;   //assegno alla variabile il risultato di un’operazione 

  } 
 

COMMENTI 

Nel precedente esempio possiamo anche vedere che sono stato inseriti dei commenti, per rendere leggibile 
il programma, i commenti vengono sempre preceduti dal doppio slash //, in questo caso tutto ciò che segue 
il doppio slash non viene considerato dal compilatore. 
Si possono anche commentare più righe con il singolo slash insieme all’asterisco nel seguente modo: 
 esempio:       /* 
   tutto questo è un commento 
   anche se è scritto su più righe 

*/ 

I commenti servono a fornire informazioni aggiuntive o a spiegare il funzionamento del programma. 
Il compilatore li ignora completamente e non li traduce in istruzioni eseguibili.   
 

ARRAY 
Un ARRAY è un insieme di variabili dello stesso tipo memorizzate in memoria in maniera contigua. 
L’ARRAY viene dichiarato con un unico nome e l’accesso alle singole variabili avviene scrivendo il nome e 
l’indice della variable. 
 

 esempio:      int  valori[5];   
 

in questo caso l’ARRAY valori contiene 5 elementi di tipo intero, ogni elemento può essere scritto e letto 
inserendo vicino al nome l’indice che va da 0 a 4, perciò le 5 variabili dell’array saranno le seguenti: 
   

valori[0] valori[1] valori[2] valori[3] valori[4] 
 

L’indice dell’array potrebbe essere anch’esso una variabile come nel seguente esempio: 
 esempio:      int  valori[5];   
   int  indice=0; 
 

   valore[indice]=2;    //scrivo nella variabile valore[0] il numero 2 
   indice++;  //incremento di uno la variabile indice 
   valore[indice]=2;  //scrivo nella variabile valore[1] il numero 2 
 

E’ possibile ovviamente dichiarare ARRAY anche di tipo FLOAT, LONG, CHAR ecc… 
 
Nel caso di ARRAY di caratteri si può dichiarare il nome ed il contenuto, ed automaticamente la dimensione 
sarà adeguata per il contenuto come ad esempio:   char nome[] = "Mario"; 
 

 
avremo che: nome[0]=’M’    nome[1]=’a’    nome[2]=’r’    nome[3]=’i’    nome[4]=’o’    nome[5]=/0 (carattere nullo) 
 

In questo caso ogni array conterrà dopo i singoli caratteri sempre il carattere ASCII NULL indicato con /0 che 
come valore ha 0.  



Daniele Postacchini  www.danielepostacchini.it 

 

ARRAY MULTIDIMENSIONALI 
 

Un array multidimensionale è, come nel caso di un array normale, un insieme di variabili dello stesso tipo 
memorizzate in memoria in maniera contigua. 
A differenza di un array monodimensionale, le variabili sono organizzate in righe e colonne, come in una 
tabella.    L’array viene dichiarato con un unico nome, e l’accesso alle singole variabili avviene tramite il nome 
seguito da più indici (uno per ciascuna dimensione). 
 

esempio:      int  valori[2][3];   
 

in questo caso l’ARRAY valori contiene 6 elementi di tipo intero, ogni elemento può essere scritto e letto 
inserendo vicino al nome i due indici: 

 
colonna 0 colonna 1 colonna 2 

riga 0 valori[0][0] valori[0][1] valori[0][2] 

riga 1 valori[1][0] valori[1][1] valori[2][2] 

 

Volendo scrivere o leggere in una casella dovremo inserire il nome dell’ARRAY seguito dall’indice riga e poi 
colonna 
   

esempio.           valori[0][1]=5;  //scrivo il valore 5 nella casella centrale della prima riga 
 

colonna 0 colonna 1 colonna 2 

riga 0  5  

riga 1    

 
 

Possiamo avere più di due dimensioni ad esempio nel seguente caso abbiamo un ARRAY a 3 dimensioni, 
questo può essere paragonato ad una tabella con più strati. La dichiarazione avviene sempre allo stesso 
modo, indicando il nome e gli elementi di ogni dimensione: 

  
esempio:      int  valori[3][3][3];   

 
 

Possiamo immaginare questo ARRAY come un cubo, come fosse una tabella 3 righe e 3 colonne presente su 
3 strati 

 
 

           
esempio:   valori[2][1][0]=5;    
 
 
 
 
 
 
 

Con lo stesso sistema si possono dichiarare ARRAY di n. dimensioni. 
 
Anche in questo caso il tipo della variabile può essere di qualsiasi tipo non necessariamente intera come 
negli esempi ed anche in questo caso gli indici possono essere a loro volta delle variabili.  

strato 2 
strato 1 

0        1       2  
colonne 

strato 0 
riga 0 

riga 1 

riga 2 

5 



Daniele Postacchini  www.danielepostacchini.it 

 

  

VETTORI DI STRINGHE 
 
Un particolare caso d vettore bidimensionale è il vettore di stringhe. La sintassi è la stessa di un vettore di caratteri a 
due dimensioni: 

char nome_vettore[num_stringhe][lunghezza_stringhe] 
 

La lunghezza della stringa deve sempre tener conto della presenza del carattere terminatore. 
Il vettore può essere inizializzato nel seguente modo: 

char elenco_nomi[3][20] = { 
                "Mario Rossi", 
             "Luigi Bianchi", 
             "Giuseppe Verdi" 

}; 
 

STRUTTURE 
I vettori (array) in C contengono elementi tutti dello stesso tipo (tutti int, tutti float, tutti char, ecc.). 
Quando si vuole creare un dato composto che includa tipi diversi (es. numeri, caratteri, stringhe), il linguaggio C mette 
a disposizione le strutture. 
Una struttura (struct) è un tipo di dato aggregato che permette di raggruppare variabili di tipo diverso sotto un unico 
nome. 
La sintassi della dichiarazione è la seguente: 

struct NOME { 
   tipo1   identificatore1; 
   tipo2   identificatore2;     Membri 
   tipo2   identificatore3; 
}; 

Ad esempio: 
struct MOTORE { 
   char             sigla[3]; 
   float            potenza; 
   unsigned    numero_giri; 
   float            aliimentazione; 
}; 

Una volta che la struttura è stata creata occorre dichiarare una variabile associata a quel tipo di struttura: 
 

• Inizialmente viene creata la struttura. 
 
 
 

• Viene dichiarata una variabile con quel tipo di 
struttura.   
 

• Vengono assegnati i valori ai membri della 
struttura. 
 

• Vengono visualizzati i valori dei membri. 
 
 
Il risultato sarà il seguente: 
 
 
 



Daniele Postacchini  www.danielepostacchini.it 

 

SCANF E PRINTF 
Lettura da Standard Input ed Output (libreria stdio.h) 

 

Per realizzare i primi semplici programmi, come mostrato nei due esempi precedenti, è necessario immettere 
dati da tastiera e visualizzarli sullo schermo. 
A questo scopo si utilizzano le funzioni scanf e printf, che appartengono alla libreria stdio.h e servono 
rispettivamente a leggere e scrivere dati dallo standard input e sullo standard output. 
 

SCANF  (scan formatted, cioè leggi con formato= 
Quando viene chiamata questa funzione, il programma si ferma in attesa che l’utente inserisca un dato da 
tastiera nella console in cui il programma è in esecuzione. Il dato inserito viene poi memorizzato nella 
variabile indicata nel comando. 
 

La sintassi è la seguente:      scanf(“formato”, &variabile1, &variabile2, …); 
 

I formati possibili sono i seguenti: 
   %d intero (int)       es.scanf(“%d”,&variabile); %c carattere singolo (chat)      es.scanf(“%c”,&variabile); 
   %f num.reale (float)       es.scanf(“%f”,&variabile); %s stringa di testo             es.scanf(“%s”,variabile); 
  %lf num.reale (double)     es.scanf(“%lf”,&variabile);  

 

Il simbolo & presente prima del nome della variabile indica l’indirizzo di memoria della variabile e non va 
messo nel caso di una stringa di testo, in quanto in quel caso il nome della variabile rappresenta già l’indirizzo 
del primo carattere. 
In maniera sintetica possiamo dire che la funzione scanf serve a leggere un dato dalla tastiera e a salvarlo in 
una variabile.   

esempio  int numero; 
scanf("%d", &numero); 

 

 

PRINTF 

Quando viene chiamata questa funzione, il programma stampa sulla console un valore o una stringa nel 
formato specificato.  I formati sono gli stessi visti per la funzione scanf. 
 

La sintassi è la seguente:   printf(“testo e formato”, variabile1, variabile2, …); 
 

In questo caso non occorre il simbolo & che indica l’indirizzo in memoria della variabile, ma va scritto solo il 
nome. 

 

esempio    int numero = 5; 
printf("Il numero vale: %d", numero); 

 

Come si può vedere nell’esempio nella parte iniziale dentro la parentesi, quella indicata nella sintassi con 
“testo e formato”, è possibile inserire un testo e successivamente ad esso il formato 
Pertanto da questo comando otterremo quanto segue:  
 
 

E’ possibile scrivere più variabili, ad esempio:           
 
 

In questo caso otterremo: 
 

Se si hanno numeri con la virgola si possono anche indicare il numero di decimali, scrivendolo prima della 
lettera che indica il tipo di variabile, come ad esempio  
nel seguente caso: 
  

 
In questo caso otterremo:  



Daniele Postacchini  www.danielepostacchini.it 

 

OPERATORI 
 
Gli operatori in C sono simboli che permettono di eseguire operazioni su variabili e valori. Si possono 
suddividere in diverse categorie in base alla funzione. 

TIPOLOGIA SIMBOLO OPERATORE ESEMPIO 
(a,b e c sono variabili) 

Operatori aritmetici 
 

+ 
- 
* 
/ 
% 
++ 
-- 

Addizione 
Sottrazione 
Moltiplicazione 
Divisione 
Modulo (resto della divisione) 
Incremento 
Decremento 

c=a+b  //c sarà uguale alla somma tra a e b 
c=a-b  //c sarà uguale alla differenza tra a e b 
c=a*b //c sarà uguale alla moltiplicazione tra a e b 
c=a/b //c sarà uguale alla somma tra a e b 
c=a%b //c sarà uguale alla resto della divisione tra a e b 
c++   //c sarà incrementato di 1 
c--    //c sarà decrementato di 1 

Operatori di assegnazione 

= 
+= 
-= 
*= 
/= 
%= 

Assegnazione 
Somma ed assegna 
Sottrai ed assegna 
Moltiplica ed assegna 
Dividi ed assegna 
Trova il resto ed assegna 

c=5     //c sarà uguale a 5 
c+=5   //c sarà incrementato di 5 
c-=5    //c sarà decrementato di 5 
c*=5   //il valore di c sarà moltiplicato per 5 
c/=5   //il valore di c sarà diviso per 5 
c%=5  // c conterrà il resto della divisione c/5 

Operatori bitwise  
(a livello di bit) 

& 
| 
^ 
~ 

>> 
<< 

AND bit a bit 
OR bit a bit 
XOR bit a bit 
NOT bit a bit 
Shift a sinistra di n. bit 
Shift a destra di n. bit 

c=a&b   //Esegue l’operazione di and tra i bit di a e b 

c=a|b   //Esegue l’operazione di or tra i bit di a e b 

c=a^b   //Esegue l’operazione di xor tra i bit di a e b 
c=~a   //Inverte tutti i bit di a e mette il risultato in c 
c=a>>2   //i bit di a vengono shiftati a destra di 2 posizioni 

c=a<<2   //i bit di a vengono shiftati a sinistra di 2 posizioni 

Operatori di confronto 

== 
!= 
> 
< 

>= 
<= 

Uguale 
Diverso 
Maggiore 
Minore 
Maggiore o uguale 
Minore o uguale 

a==b  //controlla se a è uguale a b 
a!=b  //controlla se a è diverso da b 
a>b   //controlla se a è maggiore di b 
a<b   //controlla se a è minore di b 
a>=b //controlla se a è maggiore o uguale a b 
a<=b //controlla se a è minore o uguale a b 

Operatori logici 
&& 
|| 
! 

Operatore logico and 
Operatore logico or 
Operatore logico not 

(a>0)&&(b>0) //controlla se a=0 e b=0 

(a>0)||(b>0)  //controlla se a=0 o b=0 

!(a>0)              //controlla se a è minore di zero 

Operatori speciali 
Sizeof 

& 
Dimensione di una variabile 
Indirizzo di una variabile 

c=sizeof(a) //c conterrà il numero di byte utilizzati da a 

c=&a  //c conterrà l’indirizzo in memoria della variabile a 

 
Prima di vedere l’utilizzo di questi operatori, è indispensabile cominciare a parlare delle strutture di controllo. 

 
STRUTTURE DI CONTROLLO 

 
In C, le strutture di controllo servono a gestire il flusso di esecuzione di un programma, permettendo 
decisioni, ripetizioni o salti condizionali. Si possono dividere in tre categorie principali: selezione, iterazione 
e salto.   
 

Strutture di selezione 
(condizionali) 

Strutture di iterazione  
(cicli) 

Istruzioni di salto 

o if…else 
o else if 
o switch…case 

 

o for  
o while   
o do…while 

 

o break  
o continue  
o return 
o goto 

     
  



Daniele Postacchini  www.danielepostacchini.it 

 

 

STRUTTURE DI SELEZIONE 
 
IF…ELSE 
Questa è una struttura di controllo condizionale che permette di eseguire blocchi di codice diversi a seconda 
che una condizione sia vera o falsa. 
 
Sintassi:  
 
 
 
 
Se la condizione tra le parentesi è vera (true, o 1) si esegue il codice contenuto tra le prime parentesi graffe, 
altrimenti si esegue il codice tra le parentesi dell’else. 
 
 esempio:  

In questo caso la condizione è che il valore della variabile 
conteggio sia maggiore di 0  in questo caso la stessa 
variabile viene decrementata e la variabile valore viene 
incrementata di due unità. 
Quando la condizione non è più vera, cioè quando 
conteggio diventa uguale a zero, allora si esegue ciò che è 
nelle parentesi dell’else. 

 
 
 
 
Il risultato della condizione può essere solamente TRUE 
o FALSE,  o anche 1 o 0 e la condizione può interessare 
una variabile di qualsiasi tipo.   
 
Il flusso del programma può avere due direzioni, ma 
volendo si possono annidare più strutture if dando più 
possibili percorsi al programma. 
 
 
 

esempio:  
In questo caso se la condizione è vera si va a controllare una seconda condizione e cioè se conteggio>5, in 
questo caso si incrementa valore di 2 ed in caso contrario si incrementa di 1. 
Da notare che nel secondo IF annidato dentro al primo, non sono state messe le parentesi graffe, questo 
perché si possono evitare quando nell’IF o nell’ELSE c’è una sola istruzione. 
 

 
 
 
 
 
 
 
 
 
  



Daniele Postacchini  www.danielepostacchini.it 

 

 
ELSEIF 
Questa struttura serve per verificare più condizioni in sequenza, una dopo l’altra. 
È una forma estesa dell’istruzione if...else, utile quando ci sono più possibilità di scelta. 
 
Sintassi:   
 
 
 
 
 
 
 
 
 
Le condizioni tra parentesi tonde sono più di una, il programma verifica ogni condizione ed esegue il 
contenuto tra le parentesi graffe del relativo else. 
 
 

esempio:  
in base al valore della variabile conteggio viene incrementata 
diversamente la variabile valore. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
La condizione può essere anche combinata quando si uniscono più condizioni utilizzando gli operatori logici 
visti prima. 
 
esempio:     se conteggio è compreso tra 2 ed 8 (estremi esclusi) si può scrivere in questo modo. 
 

 
 
   
  se invece voglio verificare di stare fuori da questo intervallo (estremi compresi) scriverò in questo modo. 

    
 
    
 
Le condizioni combinate possono interessare qualsiasi variabile anche differenti tra di loro all’interno della 
stessa condizione, inoltre il ciclo IF potrebbe anche non avere l’ELSE come visto negli ultimi due esempi. 



Daniele Postacchini  www.danielepostacchini.it 

 

SWITCH…CASE 
È una struttura di controllo condizionale che permette di eseguire blocchi di codice diversi in base al valore 
assunto da una variabile o da un’espressione. 
A differenza dell’istruzione IF, nel costrutto switch il controllo viene effettuato una sola volta sul valore della 
variabile, confrontandolo con i valori specificati nei vari case.   
Quando si trova una corrispondenza, viene eseguito il blocco di codice relativo fino a un’eventuale istruzione 
break, che serve a terminare lo switch. 
 
Sintassi:  
 
 

• L’espressione dentro switch() viene  
valutata.  

• Il programma confronta il suo valore con i 
vari case. 

• Quando trova un case uguale, esegue le 
istruzioni da lì in poi. 

• Il comando break serve a uscire dallo switch 
e non eseguire i casi successivi. 

• Il blocco default (facoltativo) si esegue se 
nessun valore corrisponde. 

 
 
esempio:  

 
nell’esempio viene testata la variabile intera “giorno” in base al 
suo valore viene visualizzato a video il relativo giorno della 
settimana.  
 
Nel caso dell’esempio giorno=3, pertanto verranno eseguite le 
istruzioni dopo il case 2 fino al break. Il break interromperà i 
successivi case. 
 
Se il valore non è tra 1 e 7, cioè i numeri indicati nei vari case, 
allora viene eseguito ciò che segue il default. 

 
Il diagramma di flusso dell’esempio potrebbe essere 
rappresentato come nel seguente modo: 

 
 
 
 
 

In realtà non vengono effettuati più controlli 
della variabile, ma il programma salta 
direttamente nel case che contiene il valore 
corretto. 

 
 
 
 
 
 
 



Daniele Postacchini  www.danielepostacchini.it 

 

 
 

STRUTTURE DI ITERAZIONE 
 
 
WHILE…DO 
La struttura WHILE…DO è un ciclo che verifica una condizione booleana (TRUE o FALSE) prima di eseguire il 
blocco di istruzioni. 
Se la condizione è TRUE, il blocco viene eseguito e poi la condizione viene nuovamente controllata. 
La sequenza di istruzioni viene ripetuta finché la condizione rimane vera. 
 
Sintassi:  
 

• Viene valutata la condizione del While. 

• Se vera (TRUE) allora si eseguono tutte le istruzioni. 

• Si torna a valutare la condizione del While. 

• Si eseguono le istruzioni fino a quando la condizione  
è vera. 

 
esempio:  

 
nell’esempio viene controllato il valore della variabile contatore 
se il valore è inferiore o uguale a 10, viene visualizzato sullo 
schermo e successivamente viene incrementato di un’unità.  
Il risultato sarà 

 
 
 
Il ciclo WHILE esegue il controllo in testa al blocco di  
Istruzioni, pertanto se la condizione inizialmente  
non è rispettata Il blocco di istruzioni non verrà  
mai eseguito. 
 
 
 
 
 
 
 
 
Il risultato dell’esempio sarà il seguente: 
 
 
 
 
 
 
 
 
 
 
 



Daniele Postacchini  www.danielepostacchini.it 

 

DO…WHILE 
La struttura DO…WHILE a differenza della precedente è un ciclo che verifica la condizione booleana (TRUE o 
FALSE) dopo aver eseguito il blocco di istruzioni. 
Se la condizione è TRUE, il blocco viene eseguito nuovamente. La sequenza di istruzioni viene ripetuta finché 
la condizione rimane vera. 
 
Sintassi:  
 

• Vengono eseguite tutte le istruzioni. 

• Viene valutata la condizione del While. 

• Se vera (TRUE) allora si torna ad eseguire tutte le istruzioni. 

• Si eseguono le istruzioni fino a quando la condizione  
è vera. 

 
esempio:  

 
nell’esempio viene visualizzato il valore della variabile contatore 
e successivamente viene incrementato. Al termine si controlla se 
il valore è inferiore o uguale a 10, in tal caso vengono ripetute le 
istruzioni.  

 
 
 
Il ciclo WHILE esegue il controllo in coda, dopo al blocco di Istruzioni,  
pertanto il blocco di istruzioni non verrà eseguito almeno una volta. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Il risultato dell’esempio sarà il seguente: 
 
 
 
 
 
 
 
 
 
 
 
 



Daniele Postacchini  www.danielepostacchini.it 

 

 
FOR 
Il ciclo FOR è una struttura di controllo di tipo iterativo che permette di ripetere un blocco di istruzioni per un 
numero definito di volte, oppure finché una certa condizione rimane vera. 
All’interno della struttura vengono identificate 3 parti: l’inizializzazione,  la condizione e l’aggiornamento. 

• L’inizializzazione viene eseguita una sola volta all’inizio del ciclo e si usa per dichiarare ed assegnare 
un valore alla variabile di controllo. 

• La condizione viene valutata prima di ogni iterazione (in testa) se è vera (non zero), il ciclo continua; 
se è falsa (0), il ciclo termina. 

• L’aggiornamento viene eseguito alla fine di ogni iterazione del ciclo, serve per modificare la variabile 
di controllo. 

 
Sintassi:   
 
 
 
 
esempio:        INIZIALIZZAZIONE      CONDIZIONE      AGGIORNAMENTO 

 
nell’esempioviene visualizzato il valore della variabile i  
che varia da 0 a 10 
 
 

 
 
Il risultato dell’esempio sarà il seguente: 
 
 
 
 
 
 
 
 
 
 
E’ possibile omettere una delle 3 parti del FOR, ad esempio è possibile avere le seguenti condizioni: 
 

• Ciclo FOR senza INIZIALIZZAZIONE.  
La variabile viene inizializzata esternamente al ciclo FOR 

 
 

• Ciclo FOR senza CONDIZIONE.  
La condizione viene testata internamente come  
una qualsiasi istruzione.  

 
 

• Ciclo FOR senza AGGIORNAMENTO.  
L’aggiornamento viene eseguito internamente come  
una qualsiasi istruzione. 

 

 



Daniele Postacchini  www.danielepostacchini.it 

 

 

ISTRUZIONI DI SALTO 
 
BREAK 
E’ un’istruzione di controllo che serve per interrompere immediatamente l’esecuzione del ciclo o dello switch 
in cui si trova. 
Questa istruzione termina subito: 

• un ciclo for 
• un ciclo while 
• un ciclo do...while 
• una struttura switch 

Dopo il break, l’esecuzione prosegue dalla prima istruzione dopo il blocco interrotto. 
 
Di seguito qualche esempio di utilizzo del BREAK. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



Daniele Postacchini  www.danielepostacchini.it 

 

CONTINUE 
E’ un’istruzione che serve per saltare il resto del corpo del ciclo e passare subito all’iterazione successiva. 

• In un for, salta direttamente all’aggiornamento e poi al controllo della condizione. 

• In un while o do…while, salta direttamente al controllo della condizione. 
 
 
 
Esempio nel ciclo FOR 
 
 
 
 
 
 
 
Esempio nel ciclo WHILE 
 
 
 
 
 
 
 

 
GOTO 
E’ un’istruzione di salto incondizionato: quando viene eseguita, il flusso del programma prosegue dalla 
posizione dell’etichetta indicata. 
 
L’etichetta è un nome seguito da due punti (:), simile a una variabile, ma non può essere una parola chiave. 
 
Esempio:  
 
 
 
 
 
 
 

RETURN 
Questa istruzione viene usata per terminare una funzione e restituire un valore (se la funzione non è void). 
 
Successivamente vedremo le funzioni dove RETURN verrà utilizzato più volte, di seguito un semplice esempio 
con una funzione che esegue la somma di due numeri e restituisce con l’istruzione RETURN il risultato. 
 
 
 
 
 
 
 
 
 



Daniele Postacchini  www.danielepostacchini.it 

 

ESPRESSIONI CONDIZIONALI COMPOSTE 
 

Nei precedenti esempi abbiamo visto come utilizzare le operazioni di confronto per verificare una condizione. 
 
Prendiamo l’esempio visto precedentemente nel ciclo WHILE: 
 
In questo caso il blocco delle istruzioni contenute nel ciclo 
vengono eseguite se la condizione (contatore<=10) è TRUE 
(vera). 
Quando il valore di contatore è inferiore o uguale a 10 
pertanto viene scritto sullo schermo il valore della variabile. 
 
In questo caso la condizione è una sola, vediamo ora un caso di condizione composta e lo facciamo con un 
ciclo IF all’interno del WHILE. 
 
 
 

Il risultato sarà:  
FUNZIONI 
PUNTATORI 
FILE 
 
LA condizione per cui viene eseguito il WHILE rimane la stessa, ma all’interno del ciclo c’è una struttura IF con 
una condizione composta da (contatore>3)  e  (contatore<7). 
Visto che le due condizioni sono legate dall’operatore AND &&  significa che il corpo dell’IF verrà eseguito 
solo se entrambe le condizioni sono vere. Il risultato infatti dimostra che vengono stampati solo i numeri 4,5, 
e 6. 
 
Se invece cambiamo l’operatore e mettiamo  l’operatore OR || ed allo stesso tempo modifichiamo il maggiore 
e minore nelle condizioni avremo quanto segue: 

 
 
Il risultato sarà:  

 
 
 
 
 
In questo caso viene stampato il valore solo se è inferiore a 3 e superiore a 7. 
 
Le condizioni composte possono essere anche più di due e possono anche utilizzare operatori differenti, come 
nel seguente esempio: 
  

 

 

 

 

 

 

 

In questo caso viene effettuata la stampa della variabile se il valore è compreso tra 2 e 5 oppure se è compreso 
tra 6 e 9. 



Daniele Postacchini  www.danielepostacchini.it 

 

FUNZIONI 
In ogni linguaggio di programmazione esiste la possibilità di organizzare il codice mediante funzioni. 
Le funzioni servono a: 

• evitare ripetizioni di istruzioni, 
• rendere il programma più leggibile, 
• migliorare la modularità e la struttura del codice. 

Ogni funzione possiede: 
• un NOME, 
• un TIPO di ritorno (cioè il tipo di dato che restituisce), 
• eventuali PARAMETRI che le vengono passati. 

Il contenuto della funzione (la sua definizione) va scritto al di fuori del main(). 
• Se la funzione è scritta prima del main, non occorre altro, il compilatore la conosce già. 
• Se invece la funzione è definita dopo il main, allora è necessario dichiararne prima il PROTOTIPO, cioè 

una sua anticipazione che indica: 
o il tipo di ritorno, 
o il nome della funzione, 
o i parametri che accetta. 

Questo permette al compilatore di sapere come utilizzare la funzione anche prima di incontrarne la 
definizione. 
 
Per meglio comprendere quanto detto, consideriamo una funzione che esegue la somma tra due valori che 
gli vengono passati e restituisce il risultato. 
 
 

PROTOTIPO, viene descritto il nome i due parametri passati a e 

b ed il tipo di valore restituito INT. 

 
 
 
CHIAMATA ALLA FUNZIONE, viene chiamata la funzione a cui 
vengono passati due numeri, 3 e 4, ed il risultato restituito andrà 

nella variabile intera r. 

In questo caso la variabile r è stata dichiarata dentro al MAIN. 

 
DEFINIZIONE, viene scritto il codice contenuto nella funzione, 
indicando i parametri ed il tipo come nel prototipo. 
Con l’istruzione return, si restituisce il risultato. 
 
 
Se la DEFINIZIONE fosse stata inserita prima del MAIN non 
occorreva il PROTOTIPO, come nel seguente caso. 
 
I parametri passati possono essere anche inferiori a 2 o superiori, 
e di diversa tipologia, non necessariamente tutti INT come 
nell’esempio. 
 
 
 
 



Daniele Postacchini  www.danielepostacchini.it 

 

Come le variabili, le funzioni possono essere di vario tipo, INT, FLOAT, LONG, ecc… Ma potrebbero anche 
non avere tipo e cioè non restituire alcun valore, in questo caso la funzione viene definita VOID e non ci 
sarà bisogno del return. 
 
Ad esempio la stessa cosa vista sopra la si potrebbe realizzare con 
una funzione VOID nel seguente modo. 
 
Il valore non viene restituito ma messo in una variabile globale. 
 
 
 
 
 
 
La precedente soluzione non è sicuramente la più ottimale in 
quanto si potrebbe non utilizzare alcuna variabile globale. 
 
In questo esempio vediamo la funzione inserita all’interno del 
printf, come fosse una variabile. 
Una funzione che restituisce un valore può essere vista come 
un’espressione che produce un risultato. 
Quindi, puo essere usata come fosse una variabile o un valore, 
perché quando viene chiamata “diventa” il valore che 
restituisce. 
 
Quando si scrive somma(3, 4), il valore della funzione è 7.  Per questo può essere inserita: 

• in un’assegnazione 
• in un confronto 
• in un’espressione matematica 
• come argomento di un’altra funzione 

 
Ma attenzione perché una funzione: 

• non conserva un valore permanente come una variabile, 
• non può essere modificata come una variabile, 
• produce un valore solo quando viene eseguita, 

 
Quindi è più corretto dire: 
“Una funzione con valore di ritorno è come una formula che produce un valore quando viene chiamata.” 

 
 
 
 
 
 
 
 
 
 
  



Daniele Postacchini  www.danielepostacchini.it 

 

CASTING 
Il casting è un’operazione per forzare la conversione di un dato da un tipo a un altro. 
Serve ad indicare al compilatore in che maniera interpretare un dato. 
 
Supponiamo il seguente esempio:  
 
In questo caso nonostante la variabile risultato sia di tipo float, 
il valore scritto a schermo è il seguente: 
 
 
 
Questo perché le variabili utilizzate num1 e num2 sono di tipo 
intero, pertanto l’operazione di divisione tra le due non è in grado 
di memorizzare un numero con la virgola. 
 
 
 
La soluzione in questo caso è quella di fare il casting 
dell’operazione indicando il tipo float. 
In questo caso il risultato ottenuto è il seguente: 

 
 
 
 
 
 
 
Ovviamente il casting is può effettuare con tutte le diverse tipologie di variabili e non solo dall’intero al float come 
nell’esempio precedente. 
 
Si parla di casting implicito, quando la conversione avviene senza indicare nulla come  
quando una variabile intera viene passato ad una variabile double, in questo caso si  
passa da un tipo più piccolo (int) ad un tipo più grande (double), nell’esempio b avrà lo 
stesso valore di a, ma b è un numero reale. 
 
Quando invece il valore di una variabile reale viene messo in una intera (da un tipo 
più grande ad uno più piccolo) si ha il casting esplicito. Nell’esempio la variabile 
y intera non potrà contenere il valore dopo la virgola ed il suo valore sara pari a 10. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
  



Daniele Postacchini  www.danielepostacchini.it 

 

PUNTATORI 
 
Ogni variabile può essere vista come una porzione di memoria RAM con un nome identificativo, contenente il valore 
che assegniamo alla variabile. 
 
Possiamo pertanto immaginare la memoria RAM come una serie di cassetti, ognuno di questi 
cassetti ha un suo indirizzo. 
 
 
 
 
 
 
Se dichiariamo una variabile PROVA di tipo INT, nel caso in cui la memoria sia organizzata in 
byte, questa occuperà 2 byte. 
 
 
 
 
 
Fatta questa premessa, definiamo ora un nuovo tipo di variabile definita PUNTATORE. 
 
Un puntatore è una variabile che contiene l’indirizzo di memoria di un’altra variabile. 
Come visto sopra ogni variabile ha: 

1. un valore 
2. un indirizzo (dove è memorizzata) 

Un puntatore memorizza proprio questo indirizzo e nell’esempio visto sopra della variabile PROVA il puntatore a questa 
variabile conterrà il valore 0002. 
 

Per dichiarare un PUNTATORE, si utilizza l’operatore *:      int *p; 

 

Per indicare l’indirizzo di una variabile si utilizza l’operatore &:   &PROVA indica l’indirizzo di PROVA 

 
Pertanto scrivendo:  
 
 
Avremo che p  contiene l’indirizzo di PROVA e *p rappresenta il valore di PROVA 
 
E’ possibile anche modificare il valore della variabile utilizzando il puntatore, come nel seguente esempio: 
 
 
 
 
 
 
 
N.B. 
E’ anche possibile dichiarare un puntatore che non punta ad alcuna variabile, in questo modo il puntatore 
dichiarato non contiene l’indirizzo di nessuna variabile:    int *p = NULL; 
 
 
 
 

Indirizzo Contenuto 

0000  
0001  
0002  
0003  
0004  

Indirizzo Contenuto 

0000  
0001  
0002 valore di 

PROVA 0003 

0004  



Daniele Postacchini  www.danielepostacchini.it 

 

 
Nel caso di un array di valori, il puntatore all’array punta di fatto al primo elemento: 
 
 
 
 
 
 
Le operazioni su un puntatore tengono conto della dimensione in byte della 
variabile. 
Ad esempio nel caso dell’esempio abbiamo una variabile int (2byte) sommando 
al puntatore il valore 2 andremmo a puntare l’indirizzo 0004. 
 
 
 
 
 
 
In pratica il puntatore inizialmente puntava alla riga 0 e sommando 2 punterà alla riga 4 in quanto 2 variabili 
INT sono 4 byte. 

 
STRINGHE  E PUNTATORI 
Una stringa è un vettore di char terminato dal carattere ‘\0’.  Valgono pertanto le stesse considerazioni viste 
in precedenza tranne che per qualche distinzione. 
 
Una Stringa può essere dichiarata come vettore di caratteri:  
 
ma può essere dichiarata anche come puntatore ad un vettore di tipo char:  
 
La differenza sta nel fatto che nel primo caso viene allocata una dimensione ben definita della memoria per 
contenere il numero di caratteri indicato, nel secondo caso invece viene allocata la locazione di memoria 
necessaria a contenere l’indirizzo del primo carattere, pertanto nel secondo caso scrivendo nella stringa si 
rischia di sovrascrivere un’area di memoria già occupata. 
 
 
 
 
       
 
Memoria riservata  Indirizzo di inizio 
per la stringa   la stringa potrebbe  
    sovrascrivere  
    memoria occuopata 
 
 
        
In entrambi i casi le stringhe si possono inizializzare al momento della dichiarazione: 
 
 
Anche in questo caso bisogna precisare che nel primo caso i caratteri della stringa1 “prova” vengono 
memorizzati nel vettore stringa1 , nel secondo caso invece alla variabile stringa2 viene assegnato solo 
l’indirizzo del primo elemento. 

Indirizzo Contenuto 

0000 
10 

0001 

0002 
20 

0003 

0004 
30 

0005 

0006 
40 

0007 

0008 
50 

0009 

Indirizzo Contenuto 

0000  
0001  
0002  
0003  
0004  
0005  
0006  
0007  
0008 occupata 
0009 occupata 

Indirizzo Contenuto 

0000  
0001  
0002  
0003  
0004  
0005  
0006  
0007  
0008 occupata 
0009 occupata 

strin
g

a1
 

s t r i n
 g

 a 2
 



Daniele Postacchini  www.danielepostacchini.it 

 

STRUTTURE E PUNTATORI 
Un puntatore ad una struttura contiene l’indirizzo in memoria della struttura. 
Per comprendere come vengono utilizzati i puntatori con le strutture andiamo a vedere direttamente un 
esempio. 
 
 
 
Dichiaro una struttura chiamata 
MOTORE contenente i 4 campi indicati. 

 
 
Dichiaro una variabile M1 del tipo 
struttura MOTORE, e la inizializzo con 
dei valori. 
 

Dichiaro un puntatore ptr che contiene 
l’indirizzo della struttura M1 di tipo 
MOTORE. 
 
Accedo ai singoli campi della struttura 

tramite il puntatore ptr tramite 

l’operatore -> 

 

 
VETTORE DI PUNTATORI 
E’ possibile anche avere dei vettori di puntatori, cioè un array i cui elementi sono puntatori (non valori). 
 
Nell’esempio vengono dichiarate due variabili; valore1 e valore2 ed un 
puntatore chiamato vettore con due elementi che conterranno gli 
indirizi delle due variabili. 

 
 
 

 
ALLOCAZIONE DINAMICA DELLA MEMORIA 
Lavorando con i puntatori, potrebbe essere utile organizzare in maniera logica lo spazio di memoria per le 
variabili utilizzate.  
Quando si lavora con i puntatori, si gestiscono direttamente gli indirizzi di memoria, pertanto è importante 
sapere dove sono memorizzati i dati e come sono organizzati. 
 
Quanto dichiaramo una variabile normalmente, ad esempio;   
si stabilisce già in fase di compilazione uno spazio in memoria. 
 
C’è la possibilità invece di allocare dinamicamente la memoria da assegnare alle variabili in maniera dinamica, 
durante l’esecuzione (runtime) del programma. 
Per farlo su utilizzano le seguenti funzioni presenti nella libreria stdlib.h. 
 

• malloc() alloca memoria non inizializzata 

• calloc() alloca memoria inizializzata a 0 

• realloc() ridimensiona memoria già allocata 

• free()  libera la memoria 
 
  



Daniele Postacchini  www.danielepostacchini.it 

 

MALLOC e FREE 
 
Vediamo un possibile utilizzo di MALLOC. 
Supponiamo di dover calcolare la media di un 
numero di valori non conosciuto inserito da 
tastiera.  
 
Inizialmente viene chiesto il numero di valori da 
inserire.  
 
Successivamente viene allocato lo spazio 
necessario per contenere n valori il puntatore v 
conterrà l’indirizzo del primo elemento. 
In pratica è come se avessimo dichiarato un 
vettore con n elementi puntato da v. 
 
Successivamente nel ciclo for, vengono inseriti i 
valori che di volta in volta vengono messi 
nell’indirizzo dell’elemento puntato da v. 
 
Al termine nel secondo ciclo for, viene calcolata la 
somma dei vari elementi puntati da v. 
 
Al termine viene calcolata e visualizzata la media. 
Successivamente con free viene liberata la 
memoria allocata. 
 
Se avessimo inserito 3 numeri avremmo ottenuto la seguente situazione. 

 
 
I 3 elementi puntati da v sono v[0], v[1] e v[2] e contengono 
l’indirizzo dei 3 elementi. 
Con scanf utilizzo l’operatore & in quanto con questa 
funzione occorre indicare l’indirizzo di memoria 
dell’elemento. 
Nel calcolo della media leggo direttamente il valore dei 3 
elementi senza l’utilizzo dell’operatore &. 
 

CALLOC   
A differenza di MALLOC questa istruzione alloca la memoria indicata e la inizializza al valore di 0. 

 
Viene allocata nua quantità di memoria 
per contenere 5 interi messi inizialmente 
al valore di 0. 

 
 
 
 
 
 

REALLOC 
Nel seguente esempio si va a reallocare lo spazio del vettore v con un numero fisso di 10 interi. 
 
 
  

Indirizzo Contenuto 

0000  
0001  
0002 Numero1 
0003 

0004 
Numero2 

0005 

0006 
Numero3 

0007 

0008  
0009  

Puntatore v=0002      v[0] 
 
         v[1] 
 
                                       v[2] 



Daniele Postacchini  www.danielepostacchini.it 

 

 

LIBRERIA stdlib.h 
La libreria stdlib.h del linguaggio C contiene funzioni “di utilità generale”, usate molto spesso sia su PC sia su 
microcontrollori (Arduino, ESP8266, ecc.). 
Di seguito una descrizione ordinata per categorie, con le funzioni più importanti. 

Conversione di stringhe in numeri. 

• Conversione da stringa ad intero   atoi(const char *str);  
 
 

• Conversione da stringa a long   atol(const char *str);  
 
 

• Conversione da stringa a float   atof(const char *str);  
 

Conversioni avanzate. 

• Conversione da stringa ad intero controllata.  strtol(const char *str, char **endptr, int base); 
In questo caso si passa alla funzione la stringa da convertire, endptr è invece un puntatore ad un puntatore, 
cioè endptr contiene l’indirizzo del puntatore che contiene l’indirizzo dell’ultimo carattere non convertito. 
In base va invece messa la base numerica del numero. 
 
Consideriamo ad esempio la seguente istruzione:  

 
 
La stringa da convertire è “123abc” ed ovviamente la conversione si fermerà dopo i primi 3 caratteri quelli 
numerici. 
Il secondo parametro è l’indirizzo del puntatore end dichiarato inizialmente come puntatore. 
Il terzo parametro è la base 10. 
 
Il secondo parametro end conterrà l’indirizzo del primo carattere non convertito. 
 
 Stringa = ‘1’   ‘2’   ‘3’   ‘a’   ‘b’   ‘c’  
 

end punta al 4° carattere e conterrà l’indirizzo di a 
 

• Conversione da stringa a long int, controllata.   strtoul(const char *str, char **endptr, int base); 
Come la precedente ma converte in long int solo positivi. 
 

• Conversione da stringa a numeri in virgola mobile strtod(const char *str, char **endptr); 
 

Gestione memoria dinamica, viste precedentemente 

• malloc(size_t size); 

• calloc(size_t num, size_t size); 

• realloc(void *ptr, size_t new_size); 

• free(void *ptr); 
 

Numeri casuali 

• Generatore di numeri casuali  rand(void); 
Genera un numero tra 0 e la costante della libreria RAND_MAX  

• Generatore di numeri casuali con sequenze differenti srand(unsigned int seed); 
Genera un numero casuale come nel precedente caso, ma gli viene passato il seme (seed) per generare un 
numero casuale partendo da un valore differente.  
 
Mettendo time(NULL) come seme generatore della sequenza,  mette un valore che indica il tempo attuale. 
Per utilizzare la funzione time, occorre includere la libreria time.h 

 



Daniele Postacchini  www.danielepostacchini.it 

 

Valori assoluti e divisioni 
 

• Restituisce il valore assoluto di un numero intero   abs(int x); 

• Restituisce il valore assoluto di un numero long  labs(long x); 

• Esegue la divisione tra interi restituendo quoziente e resto.  div(int num, int den); 
La funzione restituisce questa struttura  

 
 
 
 
 Esempio di utilizzo della funzione: 
 

Viene dichiarata la struttura col nome 
risultato, gli vengono passati i numeri 17 
e 5, il quoziente ed il resto saranno nei 
membri della struttura: 

o risultato.quot  
o risultato.rem 

 

• Esegue la divisione tra long restituendo quoziente e resto.  ldiv(long num, long den); 
Come nel caso precedente, ma i membri della struttura restituita sono di tipo long. 
 

 
 
 
 
 
 
 
 

Controllo del programma 
 

• Esce e termina il programma restituendo un valore. exit(int status); 
 
A differenza di return che vale 
solo nelle funzioni, exit vale 
ovunque ed esce dal 
programma. 
 
 
 

• Esce e termina immediatamente ed in modo anomalo il programma segnalando un errore grave.  abort(void); 
 

 
Gestione delle stringhe 
 

• Strcpy. Copia una stringa terminata da \0.  
 

Nell’esempio il contenuto della stringa sorgente src, viene copiato 
nella stringa destinazione dest. 

 
 
 
 
 
 



Daniele Postacchini  www.danielepostacchini.it 

 

 

• Strcmp(. Compara due stringhe terminate da \0.  
 

Nell’esempio il contenuto della stringa cmd, viene 
confrontato con la strunga “START”. 
Il confronto restituisce 0 se le stringhe sono uguali. 
 
 
 

• Strcat. Concatena due stringhe. Con il termine 
concatenare, si intendere appendere una 
stringa di seguito ad un’altra. 
 
Nell’esempio, le stringhe “Ciao ” e “mondo”, 
vengono concatenate, aggiunte una di seguito 
all’altra, per ottenere la stringa “Ciao mondo”. 
Il contenuto della stringa risultante va nella 
prima stringa usata. 
 
 

• Strlen. Restituisce la lunghezza in caratteri di una stringa. 
 
 

 
 
 
 
 

 
WORKING IN PROGRESS !!!! 

 
 

• GESTIONE DEI FILES 
 


