Daniele Postacchini www.danielepostacchini.it

PILLOLE DI PROGRAMMAZIONE IN LINGUAGGIO C

Con questa dispensa affrontiamo le basi della programmazione in linguaggio C e per farlo utilizzeremo un
ambiente di sviluppo integrato (I.D.E. Integrated Development Environment) chiamato Codeblocks.

Questo tutorial non puo ovviamente sostituire un libro sulla programmazione in linguaggio C, ma vuol fornire
le nozioni essenziali e gli strumenti per poter realizzare rapidamente semplici programmi.

PARADIGMI DI PROGRAMMAZIONE

Un paradigma di programmazione & un modello che definisce la struttura di un programma. Ogni paradigma
prevede modalita differenti per organizzare il codice e per rappresentare i dati.

Esistono diversi paradigmi di programmazione; tra i pi noti troviamo quello imperativo e quello dichiarativo.

Nel primo caso, il paradigma imperativo (probabilmente il pit diffuso) consiste nel fornire al computer una
sequenza di istruzioni da eseguire per raggiungere un determinato risultato. Questo implica la necessita di
tenere traccia dello stato del programma e delle operazioni da svolgere passo dopo passo.

Nel secondo caso, il paradigma dichiarativo si basa sull’indicare alla macchina che cosa ottenere, senza spe-
cificare come procedere per ottenerlo. E quindi il sistema stesso a determinare la sequenza delle operazioni
necessarie.

Nel nostro caso andremo ad utilizzare un linguaggio di programmazione basato sul paradigma di program-
mazione IMPERATIVO. Pertanto sara compito del programmatore stabilire la tipologia di dati da utilizzare e
organizzare la sequenza delle operazioni che la macchina dovra eseguire per raggiungere il risultato richiesto.

Daniele Postacchini www.danielepostacchini.it

Il programma e scaricabile al seguente link: https://www.codeblocks.org/downloads/binaries/

Scaricare la versione completa di compilatore codeblocks-25.03mingw-setup.exe

All'avvio del programma si presenta la seguente finestra.

¥ Start here - Code:Blocks 20.03 o X
file Edit View Search Project Buld Debug Fortran wiSmith Tooks Tooks Plugins DoxyBlocks Settings Help
CHP LI KRARAK @>800 Biruuiguwno®D
s N FY < 0@ ol opk
> Y T L EA=EE=EE 0o Q] S C 194
Management % [Start here
* Projects Files *
© Workspace
‘ The open source. cross-platform IDE
Release 20,03 rev 11983 (2020-03-12 18:24.30) gec 8,1.0 Windowsiunicode - 64 bit
B Create new oroject \,(Open an existing profect Tip of the Day
v
"y Visit the Code: Blocks forums Report & bug of request a new feature
Logs & others.
7 Code:Blocks { Search results ’ Cc L¥8uild log # 8uild messages /| CppCheck/Veras + ? CppCheck/Vera++ messages Cscope % £¥Debugger " Di®

Paste text from dipboard default

1) Prima diiniziare un nuovo progetto, occorre creare una cartella
dove salvare tutti i file.

Prova Codeblocks

2) Successivamente dal menu File, scegliere New - Project.

8 Start here - Code:Blocks 20.03
File Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins Do

New > Empty file Ctrl-Shift-N
(2 Open.. Ctrl-O Class...

Open With Hex Editor Project...

Open default workspace Build target...

Recent projects > File...

Recent files > Custom...

Import project s From template...

Nassi Shneiderman diagram

New from template X

3) Siaprira una finestra all’interno della quale ci sono - ;
rojects Category: <Al categories>
i vari tipo di progetto che possiamo realizzare, e "™ e @ o 3 Concel

Files

Custom ARM AVR Project Arduinc Code:Blo.. Console

nOI SCGg'IeremO COI’ISO|e Applicaﬁon e pOI User templates | project Project p\urgin. application

] = " Z
faremo clic sul pulsante GO. > Dg,x Dw?;m oy i

application project Link Library project project
al 3l il GLuT
B a9 @ <& e

Fortran DLL Fortran Fortran GLFW GLUT

application library project project
B | oL
® & € =1 . —
GTK+ Irrlicht Java Kernel Lightfeat...
project project application Mo.. project O Largeicons |
& 3 4 d S List

TIP: Try right-clicking an item

1. Select a wizard type first on the left
2. Select a specific wizard from the main window (filter by categories if needed)
3. Press Go

https://www.codeblocks.org/downloads/binaries/

Daniele Postacchini
4) Partira il Wizard (I'aiuto nella creazione del progetto). Faremo click su NEXT scegliendo poi il

linguaggio C. Successivamente daremo un nome al progetto e selezioneremo la cartella che ave-
vamo creato inizialmente.

Console application

& Console

Proseguire con NEXT fino ad arrivare alla scelta del compilatore.

Welcome to the new console application wizard!
This wizard will guide you to create a new
console application.

& console

Please select the language you want to use.

Please make a selection

When you ‘re ready to proceed, please click Cat

“Next".

Skip this page next time

Next > Cancel

< Back Next >

Lasciamo le impostazioni predefinite e facciamo FINISH.

Cancel

www.danielepostacchini.it

= console

Please select the folder wherk you want the new project
to be created as well as its titke.

Folder to create project in:
D:\Prova Codeblocks

Project filename:

prova.cbp

Resulting filename:

D:\Prova Codeblocks\prova\prova.chp

< Back Next > Cancel

Console application X

& Console

Please select the compiler to use and which configurations
you want enabled in your project

Compiler
GNU GCC Compiler

Approfondimento:

Il compilatore é un programma che traduce il codice
sorgente scritto in un linguaggio di programmazione di
alto livello (come C, C++, Java, ecc.) in un linguaggio
macchina o in un codice intermedio che puo essere
eseguito direttamente dal computer o da un interprete.

In altre parole, il compilatore converte il codice leggibile
dall’'uomo in istruzioni comprensibili dal processore.

La scelta consigliata per Codeblocks, é GNU GCC
Compiler”, che é uno degli strumenti Open Source, pil
diffusi e affidabili per la compilazione di programmi in C e
C++.

Create "Debug" configuration: Debug

“Debug” options

Output dir bin\Debug\

Objects output dir.: obj\Debug\

Create "Release” configuration: Release

“Release” options
Output dir bin\Release\

Objects output dir: obj\Release\
Finish

< Back Cancel

Al termine nella parte sinistra della schermataavremo g 1..in ¢ proval - Codeslocks 2002

il progetto con i relativi files.
Inizialmente troveremo solo il file main.c dove

File Edit View Se

scrivere il programma. : <global>

=3
#include <stdio.h> include la libreria standard di input/o I =

.. A Y Projects Files

(serve per funzioni come printf e scanf).

Q Workspace

= E prova

#include <stdlib.h> - include la libreria standard (qui non é © B8 Sources
ancora usata, ma viene inserita per convenzione). main.c

int main() = é la funzione principale del programma C, da cui
parte l'esecuzione.

printf("Hello world!\n"); = stampa sullo schermo la stringa
"Hello world!" seguita da un carattere ASCIl “a capo” (\n).

return 0; - indica che il programma é terminato con successo (0 = nessun errore).

arch Project Build Debug Fortran wxSmith Tools

ﬂ’@|% %‘%\ D@‘—émc@ [S X | Debug

|l = 2 & fa x

main.c
‘#inc,lucle <stdio.h>
#include <stdlib.h>

int main()

printf("Hello world!\n"):
return 0;

(telnesiEs B NI A S R

Tools+

RO MA=E=EE

Daniele Postacchini www.danielepostacchini.it

Approfondimento:

Il codice ASCII é I'acronimo di American Standard Code for Information Interchange, cioé Codice
Standard Americano per lo Scambio di Informazioni.

E un sistema di codifica che associa a ogni carattere (lettera, cifra, simbolo o comando di controllo) un
numero intero compreso tra O e 127.

Questi numeri vengono poi rappresentati in binario (cioé con 0 e 1) nei computer.

Ad esempio nel codice ASCII la lettera A corrisponde al valore 65, il numero 1 e visto come un carattere e
corrisponde al numero decimale 49 e cosi via.

Nel codice ASCII ci sono anche comandi come ad esempio nuova linea che corrisponde al numero 10.

B8 mainc [prova] - Code::Blocks 20.03
File Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks Sett

=Y = 12 TR A = W g R ctrl-Fo v B> LEG kLG
A questo punto possiamo gia compilare iI/‘M Compile current fle Ctr-Shift-F9 o
% ez B> R cFo o/ S Co

programma mediante il comando BUILD. '

Management B[main.c % Build and run Fa
< Projects Files " 1 & Rebuild Ctrl-F11
Se ci sono errori verranno segnalati nella Qévip“’v - Clean
9 Q q 4 f
finestra di Log in basso. =88 Sources 5 R
main.c 6 Rebuild workspace
; Clean workspace
9
Errors >
Select target >
Dopo aver compilato possiamo cliccare sul
pulsante RUN, o fare direttamente le due
q q o o Logs & others
OperaZ|0n| Insieme con BUILD € RUN' |2 Code:Blocks (3 Search results 7| Cece L¥Build log ® Build message
Il programma verra eseguito e nel nostro N
caso vedremo solamente la scritta o e e pies e e\ aain- €T "o ebI\Debugnain.o
output file i‘s bin.\DeAbuq\pro\{a.ixeﬂwish ,Sizi 53.ﬂ9§ IEB o
He”o World Process te : h status 0 (0 minute(s), 0 second(s))

0 error(s), g(s) (0 minute(s), 0 second(s})

“D:\Prova Codeblocks\prova\ X

Hello world!

Process returned 0 (0x0) execution time :

Press any key to continue.

Daniele Postacchini www.danielepostacchini.it

Esempio n.1

Prima di affrontare la programmazione in linguaggio C, proviamo un altro esempio.

int numerocl, numeroZ, somma;

printf ("Inserisci il primo numero: "):
acanf ("%d", &numerol);

printf ("Inserisci il secondo numerc: ");
scanf ("%d", &numerol2);

somma = numercl + numerol;

printf("La somma di %d e %d e': %d\n", numercl, numeroZ, somma);
return 0;
Anche in questo caso con il pulsante BUILD e RUN, possiamo compilare e mandare in esecuzione il

programma ed anche in questo caso l'esecuzione del programma avverra sulla generica schermata nera
dove possiamo solamente inserire dei valori e vedere dei risultati.

"D:\Prova Codeblocks\provay, X aF

Inserisci il primo numero: 5
Inserisci il secondo numero: i
La somma di 5 e 4 e': 9

Process returned 0 (0x0) execution time : 5.405 s
Press any key to continue.

Prima di affrontare la programmazione per un’interfaccia grafica realizzeremo programmi in questa
modalita.

Ma per farlo dovremo innanzitutto conoscere il linguaggio C.

Di seguito affronteremo i seguenti argomenti:

e Variabili.

e Array monodimensionali e multidimensionali.
e Operatori.

e Funzioni Scanf e Printf.

e Strutture di controllo.

e Funzioni.

e Puntatori.

e Files.

Daniele Postacchini

VARIABILI

Nel linguaggio C e C++, le variabili devono sempre essere dichiarate prima del loro utilizzo.
Dichiarare una variabile significa indicare al compilatore il nome della variabile (identificatore) e il suo tipo.

www.danielepostacchini.it

Il compilatore riservera uno spazio in memoria di dimensioni adeguate a contenere quel tipo di dato.

Nel linguaggio C i tipi di variabili fondamentali sono i seguenti:

RANGE DI VALORI

7 cifre significative

TIPO SPAZIO OCCUPATO
min max
e char 1 byte -128 +127
e unsigned char 1 byte 0 +255
¢ shor 2 byte -32.768 +32.700
e short
- ' 2 byte -32.768 +32.767
sistemi a 16 bit b) i
- 4 byte —2 147 483 648 +2 147 483 647
sistemi a 32 bit y
e unigned int
sistemi a 16 bit 2 b x 652
e unigned int il
sistemi a 32 bit 4 byte 2147 483 648 +2 147 483 647
e long 4 byte -2.147.483.648 +2.147.483.647
e unsigned long 4 byte 0 +4.294.967.295
» longiCuey 8 byte ~9223372 036854775808 |+9 223 372 036 854 775 807
sistemi a 64 bit
* unsigE 8 byte 0 18 446 744 073 709 551 615
sistemi a 64 bit
4 byte

11 bit esponente
52 bit mantissa

e float . +1.175 494 x 10738 +3.402 823 x 10%
8 bit esponente
23 bit mantissa
8 byte
o,y
« double 5 cifre SiGUEEESEE +2.225 074 x 107308 +1.797 693 x 10308

¢ long double

10 byte
19 cifre significative
15 bit esponente
64 bit mantissa

In base all’architettura del
processore esiste anche da 16

byte

Daniele Postacchini www.danielepostacchini.it
| numeri senza virgola, char, int, short e long, vengono memorizzati utilizzando il sistema binario, per
comprendere in quale maniera, possiamo considerare il numero piu piccolo, cioe il tipo char, con due
esempi:

se il numero é positivo: char prova=98; in binario=0110 0010

se il numero é negativo: char prova=-98; in binario=1001 1110

Nel primo caso il numero e positivo ed il codice binario € la semplice trasformazione del valore in decimale:
98=01100010 =0X27 +1x2°+1x2°4+0x2*+0x23+0x22+1x21+0x2° =
0 CENGIEECE 32 + (0 ECENUEEEET 0 4+ 2 SECEEOE=
64+ 32+2=98

Nel secondo caso il numero negativo viene rappresentato facendo il complemento a due del valore 98
convertito in binario, cioé si ricava il complemento del numero binario invertendo ogni singolo bit e
successivamente si somma il valore 1:

complemento di 0110 0010 = 1001 1101 (si invertono i singoli bit)

1001 1101 +1=10011110

| numeri con la virgola vengono memorizzati utilizzando il sistema a virgola mobile che prevede una
struttura di bit composta da segno-esponente-mantissa. Anche in questo caso consideriamo il piu piccolo
dei numeri con la virgola e cioe¢ il tipo float:

FLOAT 32 BIT

SEGNQ ESPONENTE MANTISSA
I A A

1 BIT 8 BIT 23 BIT :
"""""""""""""""""""""""""""""""""""""" (ESPONENTE-127)

VALORE =% 1 ,MANTISSA x 2

Lo standard IEEE754 definisce quanto segue:

SEGNO: O=positivo 1=negativo

ESPONENTE: L’esponente deve rappresentare valori positivi e negativi, per fare questo nello spazio dedicato viene
messo il valore dell’esponente reale sommato al valore 127.
In questo modo volendo memorizzare un esponente pari a +2 ,nel campo troveremo 129 che in binario
corrisponde a 1000 0001.
Volendo invece memorizzare un esponente pari a -2, nel campo troveremo 125 che in binario
corrisponde a 0111 1101.

MANTISSA: La mantissa é normalizzata, la normalizzaione si ottiene moltiplicando per 2 I'effettivo valore
(in binario la moltiplicazione per 2 avviene shiftando a sinistra di una posizione) fino a quando il bit
pit a sinistra della mantissa diventa 1, eliminando in questo modo tutti i bit a zero non significativi a
sinistra. Cio significa che il bit pit a sinistra vale sempre 1, per questo motivo e inutile memorizzare
questa informazione, i 23 bit pertanto serviranno solo a rappresentare la parte frazionaria del
numero.
Ad esempio una mantissa pari a 100 1011 0010 0000 0011 0001 trasformata come parte frazionaria
in decimale corrisponde a:

Daniele Postacchini www.danielepostacchini.it

MANTISSA (PARTE FRAZIONARIA)
|1:0/0{11:011:001:000{0:00:011000 1]

-2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -

0 -11 -12 -13 -14 =15 =16 =17 -18 -19 -20 =21 -22 -23
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

al ak 1.1 ak

o Ot Zmta s Fo t £
2 2 2 2 2

N =

1
TR
2

LN)

= 0,58691990375518798828125 +1 =

= 1,58691990375518798828125

Se ad esempio nei 4 byte abbiamo la seguente sequenza 0100 0100 0100 1011 0010 0000 0011 0001 ,
(E-127)
significa che il valore sard ottenuto come seque: VALORE =*1 M x 2

S =0=+
E=100 0100 0=136
=100 1011 0010 0000 0011 0001 =0,58691990375518798828125

136-127
Sostituendo i valori otteniaomo: ~ VALORE =+1,58691990375518798828125 x 2()

VALORE = 812,50299072265625

Al seguente link, un convertitore online dove é possibile verificare e provare la conversione in virgola mobile.
https.//www.h-schmidt.net/FloatConverter/IEEE754.html

Sign Exponent Mantissa
Value: +1 29 1.586919903755188
Encoded as: 0 136 4923441
Binary: v v v v v v v v v
Decimal representation 812.503 7
+
Value actually stored in float: 812.50299072265625 -
Error due to conversion:
Binary Representation 01000100010010110010000000110001

Hexadecimal Representation 0x444b2031

DICHIARAZIONE DI VARIABILI

La dichiarazione di variabili serve a riservare uno spazio nella memoria RAM adatto al tipo di dato che la
variabile dovra contenere.
Si possono dichiarare variabili globali, cioe accessibili da ogni parte del programma, oppure variabili locali,
dichiarate all’interno di una funzione e utilizzabili solo al suo interno.
La dichiarazione di una variabile globale avviene generalmente all’inizio del programma, prima del main.
esempio: int contatore=5;
float valore;

Nel programma potro cambiare il valore delle due variabili assegnando loro un valore o il risultato di
un’operazione.

Con lo stesso meccanismo si possono dichiarare variabili che non potranno mai cambiare il proprio valore,
cioe le costanti.

esempio: const int giorni=7;
Nel programma la variabile giorni non cambiera mai il proprio valore.

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Daniele Postacchini www.danielepostacchini.it
Durante I'esecuzione di un programma, il valore di una variabile puo essere modificato assegnandole
direttamente un nuovo valore oppure il risultato di un’operazione, utilizzando I'operatore =

esempio: int contatore; //dichiarazione della variabile senza valore
int risultato; //dichiarazione della variabile senza valore
int valore1=10; //dichiarazione della variabile con valore iniziale
int valore2=5 ; //dichiarazione della variabile con valore iniziale

int main(){
contatore=5 //assegnazione diretta del valore 5 alla variabile contatore
contatore=contatore-1; //assegno un nuovo valore in questo caso 4
risultato=valorel*valore2; //assegno alla variabile il risultato di un‘operazione

COMMENTI
Nel precedente esempio possiamo anche vedere che sono stato inseriti dei commenti, per rendere leggibile
il programma, i commenti vengono sempre preceduti dal doppio slash //, in questo caso tutto cio che segue
il doppio slash non viene considerato dal compilatore.
Si possono anche commentare piu righe con il singolo slash insieme all’asterisco nel seguente modo:
esempio: V.

tutto questo é un commento

anche se é scritto su piu righe

4
| commenti servono a fornire informazioni aggiuntive o a spiegare il funzionamento del programma.
Il compilatore li ignora completamente e non li traduce in istruzioni eseguibili.

ARRAY

Un ARRAY & un insieme di variabili dello stesso tipo memorizzate in memoria in maniera contigua.
LARRAY viene dichiarato con un unico nome e l'accesso alle singole variabili avviene scrivendo il nome e
I'indice della variable.

esempio: int valori[5];

in questo caso I'ARRAY valori contiene 5 elementi di tipo intero, ogni elemento puo essere scritto e letto
inserendo vicino al nome I'indice che va da 0 a 4, percio le 5 variabili dell’array saranno le seguenti:

valori[0] valori[1] valorif2] valori[3] valori[4]

Lindice dell’array potrebbe essere anch’esso una variabile come nel seguente esempio:
esempio: int valori[5];
int indice=0;

valore[indice]=2; //scrivo nella variabile valore[0] il numero 2
indice++; //incremento di uno la variabile indice
valore[indice]=2; //scrivo nella variabile valore[1] il numero 2

E’ possibile ovviamente dichiarare ARRAY anche di tipo FLOAT, LONG, CHAR ecc...

Nel caso di ARRAY di caratteri si pud dichiarare il nome ed il contenuto, ed automaticamente la dimensione
sara adeguata per il contenuto come ad esempio: char nome[] = "Mario";

avremo che: nome[0]="M’ nome[1]="a’ nome[2]="r" nome[3]=’i’ nome[4]=0’ nome[5]=/0 (carattere nullo)

In questo caso ogni array conterra dopo i singoli caratteri sempre il carattere ASCII NULL indicato con /0 che
come valore ha 0.

Daniele Postacchini www.danielepostacchini.it

ARRAY MULTIDIMENSIONALI

Un array multidimensionale €, come nel caso di un array normale, un insieme di variabili dello stesso tipo
memorizzate in memoria in maniera contigua.

A differenza di un array monodimensionale, le variabili sono organizzate in righe e colonne, come in una
tabella. Larray viene dichiarato con un unico nome, e I'accesso alle singole variabili avviene tramite il nome
seguito da piu indici (uno per ciascuna dimensione).

esempio: int valorif2][3];

in questo caso 'ARRAY valori contiene 6 elementi di tipo intero, ogni elemento puo essere scritto e letto
inserendo vicino al nome i due indici:

colonna 0 colonna 1 colonna 2
riga 0 valori[0][0] valori[0][1] | valori[0][2]

rigal| yaorifajio] | valorif1j[1] | valorif2][2]

Volendo scrivere o leggere in una casella dovremo inserire il nome del/ARRAY seguito dall’indice riga e poi
colonna

esempio. valori[0][1]=5; //scrivo il valore 5 nella casella centrale della prima riga
colonna 0 colonna 1 colonna 2
riga 0 5
riga 1

Possiamo avere piu di due dimensioni ad esempio nel seguente caso abbiamo un ARRAY a 3 dimensioni,
guesto puo essere paragonato ad una tabella con piu strati. La dichiarazione avviene sempre allo stesso
modo, indicando il nome e gli elementi di ogni dimensione:

esempio: int valori[3][3][3];

Possiamo immaginare questo ARRAY come un cubo, come fosse una tabella 3 righe e 3 colonne presente su
3 strati

esempio: valori[2][1][0]=5; riga 2 /j
riga 1 3 /
strato 2
riga 0 strato 1

0 1 2 strato 0
colonne
Con lo stesso sistema si possono dichiarare ARRAY di n. dimensioni.

Anche in questo caso il tipo della variabile puo essere di qualsiasi tipo non necessariamente intera come
negli esempi ed anche in questo caso gli indici possono essere a loro volta delle variabili.

Daniele Postacchini www.danielepostacchini.it
VETTORI DI STRINGHE

Un particolare caso d vettore bidimensionale € il vettore di stringhe. La sintassi & la stessa di un vettore di caratteri a
due dimensioni:
char nome_vettore[num_stringhe][lunghezza_stringhe]

La lunghezza della stringa deve sempre tener conto della presenza del carattere terminatore.
Il vettore puo essere inizializzato nel seguente modo:
char elenco_nomi[3][20] = {
"Mario Rossi",
"Luigi Bianchi",
"Giuseppe Verdi"
3

STRUTTURE
| vettori (array) in C contengono elementi tutti dello stesso tipo (tutti int, tutti float, tutti char, ecc.).
Quando si vuole creare un dato composto che includa tipi diversi (es. numeri, caratteri, stringhe), il linguaggio C mette
a disposizione le strutture.
Una struttura (struct) & un tipo di dato aggregato che permette di raggruppare variabili di tipo diverso sotto un unico
nome.
La sintassi della dichiarazione ¢ la seguente:
struct NOME {
tipol identificatorel;
tipo2 identificatore2; Membri
tipo2 identificatore3;
H
Ad esempio:
struct MOTORE {
char sigla[3];
float potenza;
unsigned numero_giri;
float aliimentazione;
f

Una volta che la struttura e stata creata occorre dichiarare una variabile associata a quel tipo di struttura:

struct MOTORE {
char sigla[3]+

Inizialmente viene creata la struttura.

float potenza;
unsigned numero_giri;
float alimentazione;

I

e Viene dichiarata una variabile con quel tipo di
struttura.

’struct MOTORE nastro:

int main()

nastro.sigla[0]

e \engono assegnati i valori ai membri della et St
struttura nastro.sigla[2]

nastro.potenza 10005
nastro.numerc giri =
nastro.alimentazione =

e Vengono visualizzati i valori dei membri.

printf("Sigla = %3\n", nastro.sigla):
\\\\\\\\ﬁ> printf ("Potenza = %.2f\n", nastro.potenza):
printf ("Numero giri = %u\n", nastro.numero giri);
printf ("Alimentazione = %.2f\n", nastro.alimentaziocne) ;
. P Sigla = M1
Il risultato sara il seguente: [y oEEPFFYSP raturn 0;

Numero giri = 2800
Alimentazione = 400.00

Daniele Postacchini www.danielepostacchini.it

SCANF E PRINTF
Lettura da Standard Input ed Output (libreria stdio.h)

Per realizzare i primi semplici programmi, come mostrato nei due esempi precedenti, € necessario immettere
dati da tastiera e visualizzarli sullo schermo.

A questo scopo si utilizzano le funzioni scanf e printf, che appartengono alla libreria stdio.h e servono
rispettivamente a leggere e scrivere dati dallo standard input e sullo standard output.

SCANF (scan formatted, cioé leggi con formato=

Quando viene chiamata questa funzione, il programma si ferma in attesa che I'utente inserisca un dato da
tastiera nella console in cui il programma e in esecuzione. Il dato inserito viene poi memorizzato nella
variabile indicata nel comando.

La sintassi € la seguente: scanf(“formato”, &variabilel, &variabile2, ...);

| formati possibili sono i seguenti:

%d intero (int) es.scanf(“%d”, &variabile); %c carattere singolo (chat) es.scanf(“%c”,&variabile);
%f num.reale (float) es.scanf(“%f”, &variabile); %s stringa di testo es.scanf(“%s” variabile);

%If num.reale (double) es.scanf(“%If”,&variabile);

Il simbolo & presente prima del nome della variabile indica I'indirizzo di memoria della variabile e non va
messo nel caso di una stringa di testo, in quanto in quel caso il nome della variabile rappresenta gia I'indirizzo
del primo carattere.
In maniera sintetica possiamo dire che la funzione scanf serve a leggere un dato dalla tastiera e a salvarlo in
una variabile.
esempio int numero;
scanf("%d", &numero);

PRINTF
Quando viene chiamata questa funzione, il programma stampa sulla console un valore o una stringa nel
formato specificato. | formati sono gli stessi visti per la funzione scanf.

La sintassi € la seguente: printf{“testo e formato”, variabilel, variabile2, ...);

In questo caso non occorre il simbolo & che indica I'indirizzo in memoria della variabile, ma va scritto solo il
nome.

esempio int numero = 5;
printf("ll numero vale: %d", numero);

Come si puo vedere nell’'esempio nella parte iniziale dentro la parentesi, quella indicata nella sintassi con
“testo e formato”, € possibile inserire un testo e successivamente ad esso il formato

Pertanto da questo comando otterremo quanto segue: (AR TR T

int numl=>5, numZ2=3;

E’ possibile scrivere piu variabili, ad esempio: int main () {
printf ("numerol=%d, numero2=%d", numl, num2);

In questo caso otterremo: RN s NP1 1[0 g Pk

Se si hanno numeri con la virgola si possono anche indicare il numero di decimali, scrivendolo prima della
lettera che indica il tipo di variabile, come ad esempio float pi = 3.14159; \

nel seguente caso: int main{) { o _
printf ("Pi con 2 decimali: %.2f", pi):

RO R el st ed Pi con 2 decimali: 3.14

Daniele Postacchini

OPERATORI

www.danielepostacchini.it

Gli operatori in C sono simboli che permettono di eseguire operazioni su variabili e valori. Si possono
suddividere in diverse categorie in base alla funzione.

TIPOLOGIA SIMBOLO OPERATORE ESEMPIO
(a,b e c sono variabili)
+ Addizione c=a+b //csara uguale alla somma traae b
- Sottrazione €=0-b //c sard uguale alla differenza tra a e b
. . I X Moltiplicazione €=a*b //c sara uguale alla moltiplicazione tra a e b
Operatori aritmetici Iy
/ Divisione c:a/b //c sara uguale alla somma tra a e b
% Modulo (resto della divisione) | c=a%b //c sara uguale alla resto della divisione tra a e b
++ Incremento C++ //csardincrementato di 1
== Decremento C-- //csara decrementato di 1
= Assegnazione c=5 //csaraugualeas
+= Somma ed assegna C+=5 //csara incrementato di 5
..] -= Sottrai ed assegna c-=5 //c sara decrementato di 5
Operatori di assegnazione . o -) .
= MO/tlp/ICCI ed assegna c*=5 /il valore di ¢ sara moltiplicato per 5
/= Dividi ed assegna C/=5 //il valore di ¢ sara diviso per 5
%= Trova il resto ed assegna | c%=5 //c conterra il resto della divisione c/5
& AND bit a bit c=a&b //Esegue I'operazione diand traibitdiaeb
/ OR bit a bit c=a | b //Esegue 'operazione dior traibitdiaeb
Operatori bitwise 4 XOR bit a bit c=a’b //Esegue l'operazione dixor traibitdiaeb
(G livello di bft) B NOT bit a bit C="a //Inverte tutti i bit di a e mette il risultato in c
>> Shift a sinistra di n. bit c=a>>2 //ibit di a vengono shiftati a destra di 2 posizioni
<< Shift a destra di n. bit Cc=a<<2 //ibit di a vengono shiftati a sinistra di 2 posizioni
== Uguale a==b //controlla se a é uguale a b
1= Diverso al=b //controlla se a é diverso da b
Operatori dich fronto > M?ggiore a>b //controlla se a & maggiore di b
Minore a<b //controlla se a & minore di b
>= Maggiore o uguale a>=b //controlla se a é maggiore o uguale a b
<= Minore o uguale a<=b //controlla se a & minore o uguale a b
&& Operatore logico and (a>0)&&(b>0) //controlla se a=0 e b=0
Operatori logici /] Operatore logico or (a>0)[[(b>0) //controlia se a=0 0 b=0
/ Operatore logico not /(a>0) //controlla se a & minore di zero
! . Sizeof Dimensione di una variabile | c=sizeof(a) //c conterra il numero di byte utilizzati da a
Operatori speciali & Indirizzo di una variabile c=&a //c conterra I'indirizzo in memoria della variabile a

Prima di vedere l'utilizzo di questi operatori, € indispensabile cominciare a parlare delle strutture di controllo.

STRUTTURE DI CONTROLLO

In C, le strutture di controllo servono a gestire il flusso di esecuzione di un programma, permettendo
decisioni, ripetizioni o salti condizionali. Si possono dividere in tre categorie principali: selezione, iterazione

e salto.

Strutture di selezione

Strutture di iterazione

Istruzioni di salto

(condizionali) (cicli)
o if..else o for o break
o elseif o while o continue
o switch...case o do..while o return
o goto

Daniele Postacchini www.danielepostacchini.it

STRUTTURE DI SELEZIONE

IF...ELSE
Questa e una struttura di controllo condizionale che permette di eseguire blocchi di codice diversi a seconda
che una condizione sia vera o falsa.

Sintassi: if (condizione) {
} else(

}

Se la condizione tra le parentesi e vera (true, o 1) si esegue il codice contenuto tra le prime parentesi graffe,

altrimenti si esegue il codice tra le parentesi dell’else.
int conteggio=10,valore=0;

esempio: . .
£ t >0
In questo caso la condizione é che il valore della variabile . ,—(—CP D-edgro’ —)— - !

conteggio sia maggiore di 0 in questo caso la stessa |
variabile viene decrementata e la variabile valore viene | FIyIo7 """ """
incrementata di due unita. [|ms=a-—c- oo
Quando la condizione non é piu vera, cioé quando |
conteggio diventa uguale a zero, allora si esegue cio che é
nelle parentesi dell’else.

FALSO
conteggio>0

Il risultato della condizione puo essere solamente TRUE
o FALSE, o anche 1 o 0 e la condizione puo interessare

— - —————

5 q q . . | 1
una variabile di qualsiasi tipo. ' gecrementa | | .
| conteggio I 1| Conteggio=10 |,
1 ! ! 1
Il flusso del programma puo avere due direzioni, ma ! : : !
volendo si possono annidare piu strutture if dando pitu ! : : ;
oyl q Y 1 1 Y

possibili percorsi al programma. T avalore] ! | |
" |ncrem%n§1va ore : : valore=0 "
| | | i |

| | |

esempio:

In questo caso se la condizione é vera si va a controllare una seconda condizione e cioé se conteggio>5, in
questo caso si incrementa valore di 2 ed in caso contrario si incrementa di 1.

Da notare che nel secondo IF annidato dentro al primo, non sono state messe le parentesi graffe, questo
perché si possono evitare quando nell’IF o nell’ELSE c’é una sola istruzione.

int conteggio=10,valore=0;

if (conteggio>0) {
conteggio-—;
fifTEBﬁEégﬁibiBf'Vélbféié?ﬁr\\“‘-\)
:else valore+=1;

A

|
| VERO FALSO Conteggio=10

conteggio=5

conteggio=10;
valore=0;

Y Y

incrementa valore incrementa valore

diz di1 valore=0

Daniele Postacchini www.danielepostacchini.it

ELSEIF
Questa struttura serve per verificare piu condizioni in sequenza, una dopo [laltra.
E una forma estesa dell’istruzione if...else, utile quando ci sono piu possibilita di scelta.

Sintassi: if (condiziocnel)

}

else if (condizione?2)

}

else if (condizione3)

else

}

Le condizioni tra parentesi tonde sono piu di una, il programma verifica ogni condizione ed esegue il
contenuto tra le parentesi graffe del relativo else.

esempio:
in base al valore della variabile conteggio viene incrementata
diversamente la variabile valore.

if (conteggio>20) {
conteggio——;
valore=valore+6; VERO

FALSO

! Lonteggio>2Q

élse if (conteggio>10) {

A 4

conteggio-—;
valore=valore+4; decrementa
conteggio
}
else if (conteggio>5) { VL
conteggio-—; incrementa valore decrementa)
valore=valore+2; di6 conteggio conteggio>3
} v
else | A 4 h 4
conteggio——; incrementa valore decrementa decrementa
valore=valore+l; di4 conteggio conteggio
} v v
incrementa valore incrementa valore
di2 di1

La condizione puo essere anche combinata quando si uniscono piu condizioni utilizzando gli operatori logici
visti prima.

esempio: se conteggio € compreso tra 2 ed 8 (estremi esclusi) si puo scrivere in questo modo.

if ((conteggio>2) && (conteggio<i)) {

se invece voglio verificare di stare fuori da questo intervallo (estremi compresi) scrivero in questo modo.
if ((conteggio>=8) (conteggio<=2)) {

Le condizioni combinate possono interessare qualsiasi variabile anche differenti tra di loro all’interno della
stessa condizione, inoltre il ciclo IF potrebbe anche non avere I’ELSE come visto negli ultimi due esempi.

Daniele Postacchini

SWITCH...CASE

www.danielepostacchini.it

E una struttura di controllo condizionale che permette di eseguire blocchi di codice diversi in base al valore

assunto da una variabile o da un’espressione.
A differenza dell’istruzione IF, nel costrutto switch il control

lo viene effettuato una sola volta sul valore della

variabile, confrontandolo con i valori specificati nei vari case.
Quando si trova una corrispondenza, viene eseguito il blocco di codice relativo fino a un’eventuale istruzione

break, che serve a terminare lo switch.

Sintassi: switch (espressione)
case valorel:

break;

e L'espressione dentro switch() viene

case valore?Z:

valutata.
e || programma confronta il suo valore con i break;

vari case.
e (Quando trova un case uguale, esegue le case valore3:

istruzioni da li in poi.
e |l comando break serve a uscire dallo switch break;

e non eseguire i casi successivi. default:
e |l blocco default (facoltativo) si esegue se

nessun valore corrisponde. }

int giorno = 3:

esernpiO: switch (giorno)

nell’esempio viene testata la variabile intera “giorno” in base al
suo valore viene visualizzato a video il relativo giorno della
settimana.

Nel caso dell’esempio giorno=3, pertanto verranno eseguite le
istruzioni dopo il case 2 fino al break. Il break interrompera i
successivi case.

Se il valore non é tra 1 e 7, cioé i numeri indicati nei vari case,
allora viene eseguito cio che seque il default.

Il diagramma di flusso dell'esempio potrebbe essere
rappresentato come nel sequente modo:

Scrivi Lunedi H Break }—7
Scrivi Martedi H Break ’—)
Scrivi Mercoledi

FALSO

Istruzioni nel
default
<

case |
printf ("Lunedi\n");
break;

case 2:
printf ("Martedi\n"):
break:

case 3:
printf ("Mercoledi\n");
break;

case 4:
printf ("Giovedi\n");
break:

case 5:
printf ("Venerdi\n"):
break;

case 0:
printf ("Sabato\n");
break;

case 7:
printf ("Domenical\n")
break:

default:
printf ("Numero non valido (1-7)\n"):
break;

In realta non vengono effettuati piu controlli

della variabile, ma il programma salta

direttamente nel case che contiene il valore

corretto.

Daniele Postacchini www.danielepostacchini.it

STRUTTURE DI ITERAZIONE

WHILE...DO

La struttura WHILE...DO € un ciclo che verifica una condizione booleana (TRUE o FALSE) prima di eseguire il
blocco di istruzioni.

Se la condizione e TRUE, il blocco viene eseguito e poi la condizione viene nuovamente controllata.
La sequenza di istruzioni viene ripetuta finché la condizione rimane vera.

Sintassi:
while (condizione da testare) {
i I) istruzione 1:
e Viene valutata la condizione del While. istruzione 2;
e Severa (TRUE) allora si eseguono tutte le istruzioni. istruzione 3;
e Sjtorna a valutare la condizione del While.
e Sieseguono le istruzioni fino a quando la condizione istruzione n;
e vera. }
esempio:

int contatore=0;
nell’esempio viene controllato il valore della variabile contatore

se il valore é inferiore o uguale a 10, viene visualizzato sullo while (contatore<=10) {
schermo e successivamente viene incrementato di un’unita. printf ("Valore=%d\n", contatore);
Il risultato sara contatore++;

Il ciclo WHILE esegue il controllo in testa al blocco di
Istruzioni, pertanto se la condizione inizialmente

non e rispettata Il blocco di istruzioni non verra VERO
mai eseguito. Contatore<=10 Scrivi contatore

Y

Incrementa
contatore

Il risultato dell’'esempio sara il seguente: RVEYE}S=E=C)
Valore=1
Valore=2
Valore=3
Valore=4

Valore=5
Valore=6
Valore=7
Valore=8
Valore=9
Valore=10

Daniele Postacchini www.danielepostacchini.it

DO...WHILE

La struttura DO...WHILE a differenza della precedente € un ciclo che verifica la condizione booleana (TRUE o
FALSE) dopo aver eseguito il blocco di istruzioni.

Se la condizione e TRUE, il blocco viene eseguito nuovamente. La sequenza di istruzioni viene ripetuta finché
la condizione rimane vera.

Sintassi:
do{

istruzione 1:
e Vengono eseguite tutte le istruzioni. istruzione 2;

e Viene valutata la condizione del While. istruzione 3;
e Se vera (TRUE) allora si torna ad eseguire tutte le istruzioni.

e Sieseguono le istruzioni fino a quando la condizione istruzione nj;
& vera }while (condizione da testare):

esempio:

int contatore=0;
nell’esempio viene visualizzato il valore della variabile contatore
e successivamente viene incrementato. Al termine si controlla se do{

il valore é inferiore o uguale a 10, in tal caso vengono ripetute le printf ("Valore=%d\n", contatore):
istruzioni contatore++;
. }while (contatore<=10);

Il ciclo WHILE esegue il controllo in coda, dopo al blocco di Istruzioni,
pertanto il blocco di istruzioni non verra eseguito almeno una volta.

A

Y

Scrivi contatore

A 4

Incrementa
contatore

VERO

Contatore<=10

FALSO

Il risultato dell’'esempio sara il seguente: REYESSC)
Valore=1
Valore=2
Valore=3
Valore=4

Valore=5
Valore=6
Valore=7
Valore=8
Valore=9
Valore=10

Daniele Postacchini www.danielepostacchini.it

FOR
Il ciclo FOR e una struttura di controllo di tipo iterativo che permette di ripetere un blocco di istruzioni per un
numero definito di volte, oppure finché una certa condizione rimane vera.
All'interno della struttura vengono identificate 3 parti: I'inizializzazione, la condizione e I'aggiornamento.
e Linizializzazione viene eseguita una sola volta all’inizio del ciclo e si usa per dichiarare ed assegnare
un valore alla variabile di controllo.
e La condizione viene valutata prima di ogni iterazione (in testa) se & vera (non zero), il ciclo continua;
se e falsa (0), il ciclo termina.
e |'aggiornamento viene eseguito alla fine di ogni iterazione del ciclo, serve per modificare la variabile

di controllo.
Sintassi: for (inizializzazione; condizione; aggiornamento)
esempio: INIZIALIZZAZIONE CONDIZIONE AGGIORNAMENTO
nell’esempioviene visualizzato il valore della variabile i int i x X ,/

che varia da 0 a 10 for (i = 0; i <= 10; i++){

printf ("Valore=%d\n",1i):

Il risultato dell'esempio sara il seguente: Valore=0

Valore=1
Valore=2
Valore=3
Valore=4

Valore=5
Valore=6
Valore=7
Valore=8
Valore=9
Valore=10

E’ possibile omettere una delle 3 parti del FOR, ad esempio & possibile avere le seguenti condizioni:

e Ciclo FOR senza INIZIALIZZAZIONE. int 1 = 0;

Al . - .. ; for (; i < 5; i++
La variabile viene inizializzata esternamente al ciclo FOR (. o ..) .
printf ("%d\n", i);

e Ciclo FOR senza CONDIZIONE. for (int i = 0; ; i++)
La condizione viene testata internamente come
- T == [.
una qualsiasi istruzione. if (1 ==) break;
for (int i = 0; i < 5;:)

e Ciclo FOR senza AGGIORNAMENTO. printf ("sd\n", i);
L'aggiornamento viene eseguito internamente come i44;
una qualsiasi istruzione.

Daniele Postacchini www.danielepostacchini.it

ISTRUZIONI DI SALTO

BREAK
E’ un’istruzione di controllo che serve per interrompere immediatamente I'esecuzione del ciclo o dello switch
in cui si trova.
Questa istruzione termina subito:
e un ciclo for
e un ciclo while
e unciclo do...while
e una struttura switch
Dopo il break, I'esecuzione prosegue dalla prima istruzione dopo il blocco interrotto.

Di seguito qualche esempio di utilizzo del BREAK.

for (int i = 0; i < 10 i++4)
if (i == §)
break:;

printf ("sd\n", i):

FWNREO

int valore=1;

switch (valore)

case 1:
printf ("Uno");
break;

case 2:
printf ("Dua") ;
break:;

case 3:
printf ("Due"):
break:;

int i

while (1)

Daniele Postacchini www.danielepostacchini.it

CONTINUE

E’ un’istruzione che serve per saltare il resto del corpo del ciclo e passare subito all’iterazione successiva.
¢ In un for, salta direttamente all’aggiornamento e poi al controllo della condizione.
e In un while o do...while, salta direttamente al controllo della condizione.

| O
1
for (int i = 0; i < 107 i++) 2
Esempio nel ciclo FOR if (i == 5) 3
continue; L
printf ("sd\n", 1i): 6
7
8
9
Esempio nel ciclo WHILE int i = 0;
while (i < 10)
it+;
if (1 == 5) |
continue;

printf ("sd\n", i):

1
2
3
y
6
7
8
9
1

0

GOTO
E’ un’istruzione di salto incondizionato: quando viene eseguita, il flusso del programma prosegue dalla
posizione dell’etichetta indicata.

Letichetta & un nome seguito da due punti (:), simile a una variabile, ma non pu0 essere una parola chiave.

Esempio: int i = 0;
inizio:
printf("i = %d\n", 1i):
i+4;
if (i < 5) {
goto inizio:

printf ("Finito!\n");

RETURN
Questa istruzione viene usata per terminare una funzione e restituire un valore (se la funzione non é void).

Successivamente vedremo le funzioni dove RETURN verra utilizzato piu volte, di seguito un semplice esempio
con una funzione che esegue la somma di due numeri e restituisce con l'istruzione RETURN il risultato.

int somma (int a, int b)
return(a + b):;

Daniele Postacchini www.danielepostacchini.it

ESPRESSIONI CONDIZIONALI COMPOSTE
Nei precedenti esempi abbiamo visto come utilizzare le operazioni di confronto per verificare una condizione.

Prendiamo I'esempio visto precedentemente nel ciclo WHILE: int contatore=0;

. . ., . . while (contatore<=10) {

In questo caso il blocco delle istruzioni contenute nel ciclo) " . " ,
] N N printf ("Valore=%d\n", contatore);

vengono eseguite se la condizione (contatore<=10) € TRUE contatore++;

(vera). }

Quando il valore di contatore e inferiore o uguale a 10

pertanto viene scritto sullo schermo il valore della variabile.

In questo caso la condizione & una sola, vediamo ora un caso di condizione composta e lo facciamo con un
ciclo IF all'interno del WHILE.

int contatore=0;

while (contatore<=10) { Il risultato sara: [
if((contatore>3) && (contatore<7)){ 5
printf ("%d\n", contatore):; 6

contatore++;

LA condizione per cui viene eseguito il WHILE rimane la stessa, ma all’'interno del ciclo ¢’ una struttura IF con
una condizione composta da (contatore>3) e (contatore<7).

Visto che le due condizioni sono legate dall'operatore AND && significa che il corpo dell’IF verra eseguito
solo se entrambe le condizioni sono vere. Il risultato infatti dimostra che vengono stampati solo i numeri 4,5,
e 6.

Se invece cambiamo l'operatore e mettiamo l'operatore OR | | ed allo stesso tempo modifichiamo il maggiore

e minore nelle condizioni avremo quanto segue:

int contatore=0;
while (contatore<=10) { Il risultato sara:
if((contatore<3) (contatore>7)) {

printf ("$d\n", contatore):

contatoret++;

In questo caso viene stampato il valore solo se & inferiore a 3 e superiore a 7.

Le condizioni composte possono essere anche pil di due e possono anche utilizzare operatori differenti, come
nel seguente esempio:

int contatore=0;

while (contatore<=10) {
if(((contatore>Z) && (contatore<h)) ((contatore>6) && (contatore<d))){
printf ("%d\n", contatore):

contatore++;

In questo caso viene effettuata la stampa della variabile se il valore € compreso tra 2 e 5 oppure se & compreso
tra6e9.

Daniele Postacchini www.danielepostacchini.it

FUNZIONI

In ogni linguaggio di programmazione esiste la possibilita di organizzare il codice mediante funzioni.
Le funzioni servono a:
e evitare ripetizioni di istruzioni,
o rendere il programma piu leggibile,
e migliorare la modularita e la struttura del codice.
Ogni funzione possiede:
e un NOME,
e un TIPO di ritorno (cioé il tipo di dato che restituisce),
o eventuali PARAMETRI che le vengono passati.
Il contenuto della funzione (la sua definizione) va scritto al di fuori del main().
e Se la funzione e scritta prima del main, non occorre altro, il compilatore la conosce gia.
e Seinvece la funzione é definita dopo il main, allora & necessario dichiararne prima il PROTOTIPO, cioe
una sua anticipazione che indica:
o il tipo di ritorno,
o il nome della funzione,
o i parametri che accetta.
Questo permette al compilatore di sapere come utilizzare la funzione anche prima di incontrarne la
definizione.

Per meglio comprendere quanto detto, consideriamo una funzione che esegue la somma tra due valori che
gli vengono passati e restituisce il risultato.

PROTOTIPO, viene descritto il nome i due parametri passati @ e

bedil tipo di valore restituito INT. int somma (int a, int b):
int main()

CHIAMATA ALLA FUNZIONE, viene chiamata la funzione a cui int r 5 somma (3, 4);

vengono passati due numeri, 3 e 4, ed il risultato restituito andra printf ("sd\n", r):

. return 0;
nella variabile intera I.

In questo caso la variabile I e stata dichiarata dentro al MAIN.

DEFINIZIONE, viene scritto il codice contenuto nella funzione, int somma(int a, int b)
indicando i parametri ed il tipo come nel prototipo. — > return (a + b);
Con l'istruzione return, si restituisce il risultato. }

Se la DEFINIZIONE fosse stata inserita prima del MAIN non

occorreva il PROTOTIPO, come nel seguente caso. int somma (int a, int b)
return (a + b);

| parametri passati possono essere anche inferiori a 2 o superiori,

e di diversa tipologia, non necessariamente tutti INT come

nell’esempio. int main()
int r = somma (3, 4);
printf ("%d\n", r):
return 0;

Daniele Postacchini www.danielepostacchini.it
Come le variabili, le funzioni possono essere di vario tipo, INT, FLOAT, LONG, ecc... Ma potrebbero anche

non avere tipo e cioé non restituire alcun valore, in questo caso la funzione viene definita VOID e non ci
sara bisogno del return.

int r;
Ad esempio la stessa cosa vista sopra la si potrebbe realizzare con
una funzione VOID nel seguente modo. void somma(int a, int b)
r=(a + b):
Il valore non viene restituito ma messo in una variabile globale.
int main ()
somma (3, 4);

printf ("%d\n", r):
return 0;

La precedente soluzione non e sicuramente la piu ottimale in

guanto si potrebbe non utilizzare alcuna variabile globale. _ X X
int somma (int a, int b)

return(a + b):
In questo esempio vediamo la funzione inserita all'interno del
printf, come fosse una variabile.
Una funzione che restituisce un valore puo essere vista come
. . int main
un’espressione che produce un risultato. . () e o
NN . printf ("%d\n", somma (3, 4)):
Quindi, puo essere usata come fosse una variabile o un valore, return 0;
perché quando viene chiamata “diventa” il valore che)
restituisce.

Quando si scrive somma(3, 4), il valore della funzione & 7. Per questo puo essere inserita:
e inun’assegnazione
e in un confronto
e inun’espressione matematica
e come argomento di un‘altra funzione

Ma attenzione perché una funzione:
e non conserva un valore permanente come una variabile,
e non puo essere modificata come una variabile,
¢ produce un valore solo quando viene eseguita,

Quindi & piu corretto dire:
“Una funzione con valore di ritorno & come una formula che produce un valore quando viene chiamata.”

Daniele Postacchini www.danielepostacchini.it

CASTING

Il casting €& un’operazione per forzare la conversione di un dato da un tipo a un altro.
Serve ad indicare al compilatore in che maniera interpretare un dato.

Supponiamo il seguente esempio:

In questo caso nonostante la variabile risultato sia di tipo float,
il valore scritto a schermo é il sequente:

int numl, num?2;
float risultato:

Risultato=3.000000 int main ()

Questo perché le variabili utilizzate num1 e num2 sono di tipo EEE?

intero, pertanto I'operazione di divisione tra le due non é in grado risultato=numl/num?;

di memorizzare un numero con la virgola. printf ("Risultato=%f\n", risultato);
return 0;

La soluzione in questo caso é quella di fare il casting . ,

)] - N int numl, num?2;
dell'operazione indicando il tipo float. float risultato:
In questo caso il risultato ottenuto é il sequente:

int main{()
Risultato=3.333333

numl=10;

num2=>3;

risultato=(float)numl/num?2;

printf ("Risultato=%f\n", risultato):
return 0;

Ovviamente il casting is puo effettuare con tutte le diverse tipologie di variabili e non solo dall’intero al float come
nell’'esempio precedente.

Si parla di casting implicito, quando la conversione avviene senza indicare nulla come
guando una variabile intera viene passato ad una variabile double, in questo caso si
passa da un tipo pil piccolo (int) ad un tipo piu grande (double), nell’esempio b avra lo
stesso valore di a, ma b & un numero reale.

int a = 10;
double b = a:

Quando invece il valore di una variabile reale viene messo in una intera (da untipo gouble % =
piu grande ad uno piu piccolo) si ha il casting esplicito. Nell’esempio la variabile

y intera non potra contenere il valore dopo la virgola ed il suo valore sara pari a 10. int vy

Il
l-l.
{a]
ng
i

Daniele Postacchini www.danielepostacchini.it

PUNTATORI

Ogni variabile puo essere vista come una porzione di memoria RAM con un nome identificativo, contenente il valore
che assegniamo alla variabile.

Possiamo pertanto immaginare la memoria RAM come una serie di cassetti, ognuno di questi Indirizzo | Contenuto
cassetti ha un suo indirizzo. 0000
0001
0002
0003
0004

Se dichiariamo una variabile PROVA di tipo INT, nel caso in cui la memoria sia organizzata in Indirizzo | Contenuto
byte, questa occupera 2 byte. 0000

0002 valore di
PROVA

Fatta questa premessa, definiamo ora un nuovo tipo di variabile definita PUNTATORE.

Un puntatore € una variabile che contiene I'indirizzo di memoria di un’altra variabile.
Come visto sopra ogni variabile ha:
1. unvalore
2. un indirizzo (dove € memorizzata)
Un puntatore memorizza proprio questo indirizzo e nell’esempio visto sopra della variabile PROVA il puntatore a questa
variabile conterra il valore 0002.

Per dichiarare un PUNTATORE, si utilizza 'operatore ¥ int* ;

Per indicare I'indirizzo di una variabile si utilizza I'operatore &: &PROVA indica l'indirizzo di PROVA

Pertanto scrivendo: int PROVA = 10:

r

int *p = &PROVA;
Avremo che p contiene I'indirizzo di PROVA e *p rappresenta il valore di PROVA

E’ possibile anche modificare il valore della variabile utilizzando il puntatore, come nel seguente esempio:
int PROVA = 10;
int *p = &PROVA;

int main()
*p o= 20;
printf("sd", PROVA):

N.B.
E’ anche possibile dichiarare un puntatore che non punta ad alcuna variabile, in questo modo il puntatore
dichiarato non contiene I'indirizzo di nessuna variabile: int *p = NULL;

Daniele Postacchini www.danielepostacchini.it

Nel caso di un array di valori, il puntatore all'array punta di fatto al primo elemento:

int vettore[5] = {10, 20, 30, 40, 50}:
int *p = vettore;
\ Indirizzo
int Ipain() 0000
\ printf ("sd", *p): 0001 .
0002
0003 RO

Le operazioni su un puntatore tengono conto della dimensione in byte della

variabile. gggﬁ 30
Ad esempio nel caso dell’'esempio abbiamo una variabile int (2byte) sommando 0006

al puntatore il valore 2 andremmo a puntare l'indirizzo 0004. 0007 §°
B : 0008

int vettore[b] = {10, 0009 50

int *p = vettore;
int main ()

printf ("sd", *(p+2)):

In pratica il puntatore inizialmente puntava alla riga 0 e sommando 2 puntera alla riga 4 in quanto 2 variabili
INT sono 4 byte.

STRINGHE E PUNTATORI

Una stringa & un vettore di char terminato dal carattere ‘\0". Valgono pertanto le stesse considerazioni viste
in precedenza tranne che per qualche distinzione.

Una Stringa puo essere dichiarata come vettore di caratteri: char stringal[€];

ma puo essere dichiarata anche come puntatore ad un vettore di tipo char: char *stringa2;

La differenza sta nel fatto che nel primo caso viene allocata una dimensione ben definita della memoria per
contenere il numero di caratteri indicato, nel secondo caso invece viene allocata la locazione di memoria

necessaria a contenere |'indirizzo del primo carattere, pertanto nel secondo caso scrivendo nella stringa si
rischia di sovrascrivere un’area di memoria gia occupata.

Indirizzo | Contenuto : Indirizzo | Contenuto
0000 g 0000
0001 : 0001
char stringall6]: |ooo2 wn char *stringa2: 0002 e
0003 ;r 0003 ir
Memoria riservata — | 0004 - i Indlirizzo di inizio 0004 s
per la stringa 0005 gQ la stringa potrebbe 0005 —
0006 =R | sovrascrivere 0006 =
0007 B :memoria occuopata 0007 -
0008 occupata 0008 ssc¢Upata
0009 occupata ' 0009 oc ad

~

In entrambi i casi le stringhe si possono inizializzare al momento della dichiarazione: ckar stringall[]="prova";

char *stringaZ="prova";

Anche in questo caso bisogna precisare che nel primo caso i caratteri della stringal “prova” vengono
memorizzati nel vettore stringal , nel secondo caso invece alla variabile stringa2 viene assegnato solo
I'indirizzo del primo elemento.

Daniele Postacchini www.danielepostacchini.it
STRUTTURE E PUNTATORI

Un puntatore ad una struttura contiene I'indirizzo in memoria della struttura.

Per comprendere come vengono utilizzati i puntatori con le strutture andiamo a vedere direttamente un
esempio.

Dichiaro una struttura chiamata struct MOTORE

MOTORE contenente i 4 campi indicati. char sigla[3]:
T float potenza;

unsigned numerc giri;

i i H H . fl t l t 1 H
Dichiaro una variabile M1 del tipo cat alimentazione

struttura MOTORE, e la inizializzo con

dei valori. _‘nt main() {
struct MOTORE M1 = (["M1", ooo.0, 2800 380.0}:

Dichiaro un puntatore ptr che contiene ___yStruct MOTORE *ptr = &M1;

I'indirizzo della struttura M1 di tipo
MOTORE

printf ("Sigla: %s\n", ptr->sigla);

(
printf ("Potenza: %.2f\n", ptr->potenza):;
printf ("Numero di giri: %d\n", ptr->numero giri):
Accedo ai singoli campi della struttura printf ("Alimentazione: %.2f\n", ptr->alimentazione) ;

tramite il puntatore ptr tramite]
return 0;
l'operatore ->

VETTORE DI PUNTATORI
E’ possibile anche avere dei vettori di puntatori, cioé un array i cui elementi sono puntatori (non valori).

Nell’'esempio vengono dichiarate due variabili; valorel e valore2 ed un

puntatore chiamato vettore con due elementi che conterranno gli int valorel = 10, valore2 = 20;
int *vettore[2];

indirizi delle due variabili.
\\"‘\"‘--‘\““\‘\“‘\\\‘\\\> vettore[0] = &valorel:

vettore[l] = &valorel;

ALLOCAZIONE DINAMICA DELLA MEMORIA

Lavorando con i puntatori, potrebbe essere utile organizzare in maniera logica lo spazio di memoria per le
variabili utilizzate.

Quando si lavora con i puntatori, si gestiscono direttamente gli indirizzi di memoria, pertanto e importante
sapere dove sono memorizzati i dati e come sono organizzati.

Quanto dichiaramo una variabile normalmente, ad esempio; =~ int valore=10;
si stabilisce gia in fase di compilazione uno spazio in memoria. Pt vetterelols

C’e la possibilita invece di allocare dinamicamente la memoria da assegnare alle variabili in maniera dinamica,
durante l'esecuzione (runtime) del programma.
Per farlo su utilizzano le seguenti funzioni presenti nella libreria stdlib.h.

e malloc() alloca memoria non inizializzata
e calloc() alloca memoria inizializzata a 0
e realloc() ridimensiona memoria gia allocata

o free() libera la memoria

Daniele Postacchini www.danielepostacchini.it
MALLOC e FREE

#include <stdio.h>

Vediamo un possibile utilizzo di MALLOC. finclude cstdizb.bho
Supponiamo di dover calcolare la media di un int n;

numero di valori non conosciuto inserito dag int *vi

tastiera. int main()
printf ("Quanti numeri? ");
Inizialmente viene chiesto il numero di valori da— " scanf ("sd", &n);
jeecrire. v = malloc(n * sizeof (int)):
if (v == NULL)
Successivamente viene allocato lo spazio printf ("Errore di allocazione\n"):

J o return 1;
necessario per contenere n valori il puntatore v

conterra l'indirizzo del primo elemento.
In pratica € come se avessimo dichiarato un for (int i = 0; 1 < n; i++) | _
vettore con n elementi puntato da v. printf ("Inserisci numero 3d: ", 1 + 1);
scanf ("%d", &v[i]):

Successivamente nel ciclo for, vengono inseriti i / -

. . g " int somma = 0O;
valori che di volta in volta vengono messi for (int i = 0; i < n; i++){
nell’indirizzo dell’elemento puntato da v. _ somma += v[i];

//////,rﬁrintf("Media = %£.2f\n", (float)somma / n):

Al termine nel secondo ciclo for, viene calcolata la
somma dei vari elementi puntati da v. free(v):
return 0;
Al termine viene calcolata e visualizzata la media. '
Successivamente con free viene liberata la
memoria allocata.

Indirizzo | Contenuto
Se avessimo inserito 3 numeri avremmo ottenuto la seguente situazione. 0000
0001
Puntatore v=0002 | v[O] 0002 Numerol
| 3 elementi puntati da v sono v[0], v[1] e v[2] e contengono 0003
Vindirizzo dei 3 elementi. v[1] 0004 o2
Con scanf utilizzo l'operatore & in quanto con questa 0005
funzione occorre indicare lindirizzo di memoria vi2l - ooo6 Numero3
dell’elemento. 0008
Nel calcolo della media leggo direttamente il valore dei 3 00%8
elementi senza l'utilizzo dell’'operatore &. 0ocg

CALLOC

A differenza di MALLOC questa istruzione alloca la memoria indicata e la inizializza al valore di 0.
#include <stdio.h>

Viene allocata nua quantita di memorig #include <stdlib.h>

per contenere 5 interi messi inizialmente ;. ...

al valore di 0. int n = 5;

int main() {

v = calloc(n, sizeof(int)):

for (int 1 = 0; 1 < n; i++4) printf ("val= %d\n", i, v[i]):
free (v):

return 0;

REALLOC

Nel sequente esempio si va a reallocare lo spazio del vettore v con un numero fisso di 10 interi.
realloc(veid *v, 10 * sizeof(int)):

Daniele Postacchini www.danielepostacchini.it

LIBRERIA stdlib.h

La libreria stdlib.h del linguaggio C contiene funzioni “di utilita generale”, usate molto spesso sia su PC sia su
microcontrollori (Arduino, ESP8266, ecc.).
Di seguito una descrizione ordinata per categorie, con le funzioni pil importanti.

Conversione di stringhe in numeri.

Conversione da stringa ad intero atoi(const char *str); char s[] = "123";
int x = atoi(s);
Conversione da stringa a long atol(const char *str); char s[] = "123";

long x = atoi(s):

Conversione da stringa a float atof(const char *str);char =[] = "123";
float x = atof(s):

Conversioni avanzate.

Conversione da stringa ad intero controllata. strtol(const char *str, char **endptr, int base);

In questo caso si passa alla funzione la stringa da convertire, endptr & invece un puntatore ad un puntatore,
cioé endptr contiene I'indirizzo del puntatore che contiene I'indirizzo dell’ultimo carattere non convertito.

In base va invece messa la base numerica del numero.

Consideriamo ad esempio la seguente istruzione: char *end;
long v = strtol("123abc", &end, 10);

La stringa da convertire & “123abc” ed ovviamente la conversione si fermera dopo i primi 3 caratteri quelli
numerici.

Il secondo parametro & I'indirizzo del puntatore end dichiarato inizialmente come puntatore.

Il terzo parametro ¢ la base 10.

Il secondo parametro end conterra I'indirizzo del primo carattere non convertito.

Stringa = lll 12I I3I lal lbl ICI

End punta al 4° carattere e conterra I'indirizzo di a

Conversione da stringa a long int, controllata. strtoul(const char *str, char **endptr, int base);
Come la precedente ma converte in long int solo positivi.

Conversione da stringa a numeri in virgola mobile strtod(const char *str, char **endptr);

Gestione memoria dinamica, viste precedentemente

malloc(size_t size);

calloc(size_t num, size_t size);
realloc(void *ptr, size_t new_size);
free(void *ptr);

Numeri casuali

Generatore di numeri casuali rand(void);

Genera un numero tra 0 e la costante della libreria RAND_MAX

Generatore di numeri casuali con sequenze differenti srand(unsigned int seed);

Genera un numero casuale come nel precedente caso, ma gli viene passato il seme (seed) per generare un
numero casuale partendo da un valore differente. srand (time (NULL)) :

Mettendo time(NULL) come seme generatore della sequenza, mette un valore che indica il tempo attuale.
Per utilizzare la funzione time, occorre includere la libreria time.h

Daniele Postacchini www.danielepostacchini.it
Valori assoluti e divisioni

Restituisce il valore assoluto di un numero intero abs(int x);
Restituisce il valore assoluto di un numero long labs(long x);
Esegue la divisione tra interi restituendo quoziente e resto. div(int num, int den);
La funzione restituisce questa struttura typedef struct
int quot:;
int rem;
} div_t:

Esempio di utilizzo della funzione: #include <stdio.h>
#include <stdlib.h>
Viene dichiarata la struttura col nome _
risultato, gli vengono passatii numeri 17 10t main() L
! . | : div t risultato = div (17, 5):
e 5, il quoziente ed il resto saranno nei —

| printf ("Quoziente: %d\n", risultato.quot):
membri della struttura: printf ("Resto: %d\n", risultato.rem);
o risultato.quot return 0;

o risultato.rem }

Esegue la divisione tra long restituendo quoziente e resto. ldiv(long num, long den);
Come nel caso precedente, ma i membri della struttura restituita sono di tipo long.
#include <stdio.h>
#include <stdlib.h>

int main() {
ldiv_t risultato = Hdiv(L?, 5):
printf ("Quoziente: %d\n", risultato.quot):
printf ("Resto: %d\n", risultato.rem):
return 0;

Controllo del programma

Esce e termina il programma restituendo un valore. exit(int status);

|] #include <stdio.h>
A differenza direturn chevale 43, .1,,40 <stdlib.h>
solo nelle funzioni, exit vale
ovunque ed esce dal int main()
programma. printf ("Programma avviato\n"):
exit (0);
printf ("Questa riga non verra mai eseguita\n");

}

Esce e termina immediatamente ed in modo anomalo il programma segnalando un errore grave. abort(void);

Gestione delle stringhe

Strcpy. Copia una stringa terminata da \0. #include <stdio.h>
#include <string.h>

Nell’esempio il contenuto della stringa sorgente src, viene copiato

]] i int main()
nella stringa destinazione dest.

char src[] = "Ciao":
char dest[10];
strcpy(dest, src):
printf ("%s\n", dest):
return 0;

Daniele Postacchini www.danielepostacchini.it

e Strcmp(. Compara due stringhe terminate da \0. ~#includs <stdic.h>
#include <string.h>
Nell’esempio il contenuto della stringa cmd, viene int main() ({
“« ” char cmd[] = "START":
confrontato con la strunga “START”. if (stremp(cmd, "START") — 0) {
Il confronto restituisce O se le stringhe sono uguali. printf ("Comando START riconosciuto\n"):
}

return O;

e Strcat. Concater.la }jue stringhe. Con il termine #include <stdio.h>
concatenare, si intendere appendere una #include <string.h>
stringa di seguito ad un’altra.

int main()
Nell’esempio, le stringhe “Ciao ” e “mondo”, c:ar E:?"--'- - "Ccliafj "
vengono concatenate, aggiunte una di seguito gt?Zat a _b) fondo s
’ . up ” I r
all’altra, per ottenere Ig strmga Ciao mondo”. printf ("$s\n", a);
Il contenuto della stringa risultante va nella return 0;
prima stringa usata. }

e Strlen. Restituisce la lunghezza in caratteri di una stringa.
#include <stdio.h>
#include <string.h>

int main()
char =[] = "Hello":
printf ("Lunghezza: %d\n", strlen(s)):
return 0;

WORKING IN PROGRESS !!!!

e GESTIONE DEI FILES

